State of Iowa

,* .

*

1961

Report of the

Iowa Highway Study Committee

Created by

Chapter 426

House Joint Resolution 12

Laws of the Fifty Eighth General Assembly

March 24, 1959

Published by The State of Iowa

Des Moines

TABLE OF CONTENTS

Letter of TransmittalPage	
AcknowledgementsPage	
IntroductionPage	i
Authority For Road StudyPage	i
Method of Conducting the Road StudyPage	i
Findings of the Road StudyPage	īij
Principal Recommendations and ProposalsPage	iv
Activities of the Road Study CommitteePage	v
Report to the 59th General AssemblyPage	vi

4

ļ

-

ø,

Chapter I. Primary Highways

Introduction	Page	l
Classification of Primary Highways	Page	2
Size and Composition of the Primary Road System	Page	2
Recommendation of Automotive Safety Foundation	Page	3
Recommendation of Highway Study Committee	Page	4
Freeway System	Page	6
Recommendation of Automotive Safety Foundation	Page	6
Recommendation of Highway Study Committee	Page	6
Jurisdiction of Primary Road Extensions in Cities and Towns	Page	7
Recommendation of Automotive Safety Foundation	Page	7
Recommendation of Highway Study Committee	Page	7
mansfer of Roads out of Primary Road System	Page	8
Recommendation of Automotive Safety Foundation	Page	8
Recommendation of Highway Study Committee	Page	8
Primary Highway Needs	Page	9
Annual Costs of Proposed State Primary Road System	Page	9
Annual Costs of Local Service Primary Roads	Page	10
Annual Costs of Existing Primary Road System	Page	10
Total Costs of Existing Primary Road System	Page	11
Rural-Urban Division of Total Costs of Primary Road System	Page	11
Capital Investment Costs of 20-year Program	Page	12
Backlog of Primary Road Needs	Page	12 A
Addition of Costs of Local Service Primary Roads	Page	12A
Recommendation of Automotive Safety Foundation	Page	12A
Recommendation of Highway Study Committee	Page	12A
Primary Road Finance	Page	13
Share of Road Use Tax Fund	Page	13
Adoption of 20-year Program	Page	14
Suggestion of Public Service Administration	Page	14
Recommendation of Highway Study Committee	Page	14
Bond Issue for Primary Roads	Page	14
Recommendation of Highway Study Committee	Page	14
Removal of Limit of Expenditures on Primary Road Extensions	Page	15
Suggestion of Automotive Safety Foundation	Page	15
Recommendation of Highway Study Committee	Page	15
Primary Highway Management	Page	15
State Highway Over-all Management	Page	16
Recommendation of Automotive Safety Foundation	Page	16
Recommendation of Highway Study Committee	Page	16
Internal Management of the State Highway Department	Page	17

Recommendation of Automotive Safety Foundation	Page	17
Recommendation of Highway Study Committee	Page	17
Miscellaneous Matters Relating to Primary Highways	Page	17
Intergovernmental Relations	Page	18
Recommendation of Automotive Safety Foundation	Page	18
Recommendations of Highway Study Committee	Page	18
Diagonal State Highways	Page	19
Recommendations of Automotive Safety Foundation	Page	19
Recommendations of Highways Study Committee	Page	19
Acquisition of Right of Way	Page	19
Recommendation of Automotive Safety Foundation	Page	19
Recommendation of Highway Study Committee	Page	20

Chapter II. Secondary Highways

Introduction	-Page	21
Classification of Secondary Highways	Page	22
Present Secondary Highway Classifications	-Page	22
Reclassification of Secondary Highways	Page	22
Recommendation of Automotive Safety Foundation	-Page	24
Recommendation of Highway Study Committee	-Page	24
Standards for Secondary Highways	-Page	25
Recommendation of Automotive Safety Foundation	-Page	25
Recommendation of Highway Study Committee	-Page	26
Secondary Highway Needs	-Page	26
Average Annual Costs for Secondary Highways	Pare	26
Tota? Costs for Secondary Highways	Page	29
Capital Investment Costs for Construction	Page	20
Backlag of Work on Secondary Highways	-Page	30
Distribution of Noode Among Counting	Para	30
Bocommondution of Victure Study Consistion	Domo	20
Secondendation of Righway Study Constitutee	-rage	20
Dresent Nothed of Division of Vishimy Funde	-rage	30
Proposed Method of Division of Michael Durda	Page	20
Suggestion of Public Administration Service	-Fage	31
Opinion of Fighway Study Committee		3î
Distribution of Road Use Tax Fund Allocations	-Page	31
Recommendation of Highway Study Committee	-Page	32
Farm-to-Market Road Fund	-Page	22
Recommendation of Highway Study Committee	Page	22
Becommendation of Wighways Study Committee	-rage Dage	32
Manavament of Secondary Highways	-Page	33
Definition of Responsibility of Boards of Supervisors & County		//
Engineers	-Page	33
Recommendation of Automotive Safety Foundation	-Page	-33
Recommendation of Highway Study Committee	-Page	34
Advertisement and Letting for Construction	-Page	34
Recommendation of Highway Study Committee	-Page	34
Advertisement and Letting for Maintenance Equipment & Material	-Page	35
Recommendation of Highway Study Committee	-Page	35
Tile Across Highway	-Page	36
Recommendation of Highway Study Committee	-Page	36
Rural Suldivisions and their Roads	-Page	36
Recommendation of Highway Study Committee	-Page	36

Chapter III. City and Town Streets

ş

.

...

-

_

_

~

-

-

-

_

IntroductionPa	ige	38
Classification of StreetsPa	ige	39
Recommendation of Automotive Safety FoundationPa	age	41
Recommendation of Highway Study CommitteePe	age	41
Needs of City and Town StreetsPa	ige	41
General Needs	ize	41
Average Annual Costs of Improvement ProgramsPa	age	42
Total Costs of Improvement ProgramsPa	ige	42
Capital Invest Costs for ConstructionPa	ige	44
Backlog of Work Needed NowPa	ige	44
Distribution of Needs Among Cities and TownsPa	ige	44
City and Town Street FinancePa	ige	45
Current Street RevenuePa	ige	45
Estimated Street RevenuesPa	ige	46
Comparison of Needs and Anticipated RevenuesPa	ige	46
Distribution of Road Use Tax Fund Allocations Among Cities	0	
and TownsPa	ige	48
Management of City and Town StreetsPa	ige	48
General Management of StreetsPa	ige	49
Relationships Between State Highway Commission and Cities and	-	
TownsPa	lge	49
Recommendation of Automotive Safety FoundationPa	ige	49
Recommendation of Highway Study CommitteePa	ige	49
Street Planning, Budgeting, and ReportingPa	ige	50
Recommendation of Automotive Safety FoundationPa	ige	50
Recommendation of Highway Study CommitteePa	ige	51
Traffic Engineering for City and Town StreetsPa	ige	52
Recommendation of Automotive Safety FoundationPa	ιgθ	52
Recommendation of Highway Study CommitteePa	ige	52
Contracts Between Cities and Towns or CountiesPa	ige	52
Recommendation of Automotive Safety FoundationPa	ize	53
Recommendation of Highway Study CommitteePa	ge	53
Bonds for City and Town StreetsPa	128 128	
Recommendation of Highway Study CommitteePa	120	53
Increase in Optional Road Levy on Property in Cities and TownsPa		54
	-0-	

Chapter IV. State Park and Institutional Roads

Introduction	-Page	55
Definition of State Park and Institutional Roads	-Page	55
Jurisdiction of State Park and Institutional Roads	-Page	55
Recommendation of Automotive Safety Foundation	-Page	57
Recommendation of Highway Study Committee	-Page	57
Finance of State Park and Institutional Roads	-Page	52
Current Method	-Paze	20
Recommendation of Highway Study Committee	-Page	57

•

Chapter V. Road Use Tax Fund

Composition of Road Use Tax Fund	Page	58
Basis of Distribution of Road Use Tax Fund	Page	58
Apportionment of Road Use Tax Fund	Page	59
Fixed Percentage of Total Road Use Tax Fund	Page	59
Fixed Amount from Road Use Tax Fund	Page	59
Allocations to Road and Street Systems	Page	59
Division among Counties	Page	59
Division among Cities and Towns	Page	60
Special Motor Vehicle Fuel Taxes	Page	60
Recommendations	Page	60
Two-cent Temporary Motor Vehicle Fuel Tax	Page	60
Recommendation of Highway Study Committee	Page	60
Motor Vehicle License Fees	Page	61
Recommendation of Public Administration Service	Page	61
Recommendation of Highway Study Committee	Page	61
Additional Sources of Revenues for Highways	Page	62
Suggestions of Public Administration	Page	62
Suggestions of Highway Study Committee-4	Page	62
Prior Allocation of Road Use Tax Funds	Page	62
Recommendation of Highway Study Committee	Page	62
Allocation of Road Use Tax Fund	Page	63
Recommendation of Public Administration Service	Page	63
Recommendation of Highway Study Committee	Page	65

Chapter VI. Safety

Introduction	Page	-66
Driving a Right or a Privilege	Page	66
Interest in Highway Safety	Page	66
Work of the Sub-Committee	Page	67
Recommendations of Highway Study Committee	Page	67
For a Traffic Coordinating Committee of State Officials	Page	67
For Continuing Legislative Study Committee	Page	67
For Citizens Safety Council	Page	68
For Traffic Safety Coordinator	Page	68
For Local Traffic Safety Programs	Page	-68
For Analysis of Iowa Motor Vehicle Laws	Page	-68
For Probationary Licenses for Young Persons	Page	69
For Legislation Concerning the Drinking Driver	Page	69
Report of Sub-Committee on Highway Safety	Page	69

Chapter VII. Miscellaneous Recommendations

IntroductionPage	: 71
Budget Law Application to Other AgenciesPage	71
Recommendation of Highway Study CommitteePage	71
Continuation of Highway Study CommitteePage	, 71
Recommendation of Highway Study CommitteePage	71
Budgets Programs, and InventoriesPage	72
Recommendation of Highway Study CommitteePage	72

Chapter VIII. Minority Reports

Minority Report No. 1Page	74
D. C. Nolan, Rusell Eldred, Miles P. Sutera, and James R. DoughertyPage	74
Recommendation for Allocation of Road Use Tax FundPage	74
Minority Report No. 2Page	75
Harold J. TeachoutPage	75
Recommendation for Allocation of Road Use Tax FundPage	76
	<u> </u>

Appendix

Distribution of 35 per cent of Road Use Tax Fund to Counties Distribution of 15 per cent of Road Use Tax Among Cities and Towns Present and Proposed Registration Schedules for Trucks and Buses

Table 1 Present schedule of Fees classified by gross weight of vehicle.

Table 2 Present schedule of Fees for Combinations of Vehicles.

Table 3 Present schedule of Fees for Unit Trucks and Trailers.

Table 4 Present schedule of Fees for Truck-Tractors and Semi-trailers. Table 5 Summary of Annual Registration Fees

ş

Table 6 Suggested schedule of Registration Fees for Commercial Vehicles. Recommendations in brief of the Highway Study Committee

IOWA HIGHWAY STUDY COMMITTEE

Letter of Transmittal

TO THE GOVERNOR AND THE 59TH GENERAL ASSEMBLY:

This report is the result of our 20-month study of our primary and secondary roads, and municipal street systems in Iowa. The resolution of the 58th General Assembly which authorized this study directed the Committee to make recommendations to the 1961 Legislature on construction, maintenance, management, financing and safety of our entire system. Our findings and recommendations on these matters are included in this report.

We earnestly hope that the results of this survey will be used by this and succeeding legislatures and all governmental agencies concerned for the betterment of each road system in the state. Obviously it should not be expected that all the changes in the laws and administrative policies suggested from the survey can be adopted immediately. Experience has shown that this takes years. Therefore we urge the public, the legislature and governmental agencies concerned to give continuing consideration to these proposals.

Senator Chairman

Senator Gene

Neal Pierce

Respectfully submitted.

Merle Ha

Vice Chairman

Miles P. Sutera

Iowa County Supervisors Assoc.

Charles F. Iles

Iowa League of Municipalities

Kenneth Robinson Iowa League of Municipalities

R. Dougherty

Socretary Iowa County Engineers Assoc.

Chout. Tea

Member, Iowa Highway Commission

ACKNOWLEDGEMENTS

This study could not have been completed within the allotted time without the excellent cooperation of many persons and groups. Building and maintaining adequate highways, roads and streets in the state of Iowa is a big business, a very important business. At the present time some \$220,000,000 is being spent annually to meet the road needs of Iowans. Just to find out what the needs of our various systems will be for the next twenty years was an enormous task, we found. However, we think the investment in this survey will pay rich dividends to the people of Iowa in planning and adequately financing the needs of a growing state.

First of all we want to acknowledge the work of the staff of the Automotive Safety Foundation and Public Administration Service, particularly that of Mr. Harold Hansen of the Foundation and Mr. James Coyne of the Administration Service. Next we want to thank the Iowa Highway Commission for making the facilities of that office available to the two consulting firms and for their help in providing essential information for this study. We also particularly want to acknowledge the fine work of Mark Morris who prepared the committee report from the actions taken by the committee.

The Ames office of the U.S. Bureau of Public Roads assisted the committee in many ways and a significant portion of the cost of the study was financed by the Bureau. We want to thank the Bureau of Public Roads for this assistance and especially for the advice and cooperation of W.E. Reed, the Division Engineer of the Bureau.

Many county officials and municipal officials helped provide the statistical information for this study. We thank these local officials for their time, cooperation and assistance. Finally we acknowledge the work of Clayton Ringgenberg, Director of the Legislative Research Bureau, who served as administrative secretary to the committee in planning and carrying out the study and to Mrs. Winifred Dalrymple, clerk of the committee.

MEMBERS OF THE IOWA HIGHWAY STUDY COMMITTEE

Senator D. C. Nolan, Chairman

Introduction

I. Authority for Road Study

In House Joint Resolution 12, of the 58th General Assembly of Iowa, in, session in 1959, authorized the creation of a Road Study Committee of 11 members and instructed it to undertake a study of the highway needs and highway finances of the state and to make recommendations to the 59th General Assembly with respect to legislative policies and management practices to be followed for highway construction and maintenance, for the distribution of state revenues for highway purposes, and for the development of techniques for closer coordination between state and local units in planning and constructing Iowa highways, roads, and streets.

II. Method of Conducting the Road Study

Pursuant to this Resolution, the Road Study Committee created thereby and the Iowa State Highway Commission entered into an agreement with each of two agencies for technical services in carrying out the assignment of the committee. One agreement was made with the Automotive Safety Foundation, a non-profit educational and research organization of Washington, E.C., to direct the necessary engineering studies for the determination of the physical needs of the highways of the state. The other agreement was with the Public Administration Service, a non-profit research organization of Chicago, Illinois, to conduct the necessary fiscal studies for the determination of the propriety of the division of current and probable future revenues for highway purposes among the various jurisdiction charged with administration of highways and for the determination of the sufficiency of these revenues for the satisfaction of the highway needs of each of the highway systems of the state as determined in the engineering studies.

In the course of its work, the Automotive Safety Foundation appointed three engineering advisory committees, composed of state, county, and city engineers, respectively, to aid in the development of road and street standards appropriate

i

to the needs of the various highway systems of the state and to aid in planning methods of procedure best suited to Iowa conditions. Then, the Foundation solicited and obtained the assistance and cooperation of approximately 300 engineers, including city, county, and State Highway Commission Engineers for participation in the study, reporting facts, appraising the adequacy of roads and streets under their management, and estimating costs for their respective jurisdictions.

To guide this work on a uniform and practical basis and to keep it in accord with sound engineering principles, the Foundation prepared manuals of procedure which included standards by which all existing roads, streets, and structures were measured as to adequacy and as to present and future improvement needs. These manuals, which are available as separate published documents, contained complete instructions in detail for the entry, in an orderly manner, of all necessary data and computations on work sheets for each separate structure and each section of road or street of the entire mileage of the roads and streets in the state.

Staff engineers under Foundation supervision directed and correlated operations of the engineers of each jurisdiction (state, county, city) required for the collection and assembly of the necessary data which served as the basis for the determination of highway needs. These staff engineers also personally made appraisals in jurisdictions lacking engineering services. Staff and Foundation engineers reviewed and checked the data for all systems to verify adherence to principles and standards adopted for the study and for validity of estimation of costs. The data obtained were coded and entered upon 125,000 data processing punch cards and computation of the long range programs was accomplished with an electronic computer. These cards and all other basic records, work sheets, and procedures were filed with the State Highway Commission for future reference and for assistance to the state, counties, and cities.

For the fiscal studies, the Public Administration Service collected and analized all available recent data on revenues for highway purposes in Iowa,

ii

investigated various systems for the determination of fiscal responsibility of highway users and non-users for highway support, developed and applied various systems for the division of highway revenues among highway jurisdiction, prepared forecasts of highway revenues for each year for a 20-year period, compared the anticipated revenues with the estimated average annual costs of the various improvement programs developed in the needs study and directed attention to several sources of new revenue to meet deficiencies of income.

III. Findings of the Road Study

The Automotive Safety Foundation determined, in the course of the engineering studies, that the current backlog of deferred and urgently needed work and future accruals of highway needs in Iowa during the next 20-years would require a total expenditure of \$5,560 millions, or an average of \$278 millions per year within that period. Needs of the primary highways, in the period, would require a total of \$2,322 millions, or an average of \$116.1 millions per year; those of the county highways, a total of \$2,158 millions or an average of \$107.9 millions per year; and those of the municipal roads and streets, a total of \$1,081 millions or an average of \$54.1 millions per year over the next 20-years.

The Public Administration Service found, in the course of the fiscal studies, that the current and anticipated future revenues for highway purposes over the 20-year program period proposed by the Automotive Safety Foundation would be \$400 million or an average of \$20 million per year less than the amount required for the satisfaction of the current backlogs and future accruals of highway needs during that period.

The Public Administration Service made no specific recommendations for providing additional revenue for highway purposes but did make suggestions for the elimination of this deficit and for the distribution of such revenue as may be derived from highway user taxes. In these, this agency, proposed that 55 per cent of the revenue from highway user taxes collected by the state be allocated to

iii

the state for use on the primary highways; that 30 per cent be allocated to the counties for use on the county highways; and that 15 per cent be allocated to the municipalities for use on municipal roads instead of the 50, 42, and 8 per cents allocated respectively for these several purposes from the 1960 revenues from highway user taxes.

IV. Principal Recommendations and Proposals of ASF and PAS

Principal recommendations of the Automotive Safety Foundation, as set forth in its final report, "Iowa Highway Needs, 1960-1980" to the Highway Study Committee are:

- Limitation of the primary highways to a total of 8,400 miles, including extensions of these highways into and through municipalities,
- Transfer of 1,902 miles of local service primary highways to the counties, or place them in a group apart from the other primary roads if retained in the primary road system,
- 3. Classification of the primary highways, other than the local service primary highways, into two systems, a freeway system of 1,928 miles including the 711 miles in the interstate system, and a primary system including 6,472 miles of other primary roads.
- 4. Reclassification of county highways into county trunk, county feeder, and local secondary roads,
- Classification of municipal roads and streets, other than extensions of primary highways in municipalities, into arterial and access street systems,
- 6. Adoption of budgetary control of revenues allocated from state highway user revenue for use on municipal roads and streets.
- 7. Definition of responsibilities of county board of supervisors and county engineers with respect to county road administration,

iv

8. Adoption of a fixed term of tenure for county engineers, and

9. Provision for keeping highway needs study up to date.

Outstanding features of the report of the Public Administration Service to the Highway Study Committee are the proposals:

- To distribute 55 per cent of the revenues from highway user taxes to the state for use on primary roads; 30 per cent to the counties for use on the county roads; and 15 per cent to the municipalities for use on municipal roads and streets,
- 2. To distribute the allocation to the counties among the counties on the basis of needs, and
- 3. To distribute the allocation to the cities among population groups on the basis of needs and to distribute the allocation to each group among the cities or towns in the group on the basis of population.
- 4. To establish a single flat rate for automobile registration, and
- 5. To discontinue the 10 per cent sales tax allocation to the road use tax fund and replace it with a 5 per cent sales tax on motor vehicle parts, tires, accessories and equipment.

This agency also made specific suggestions for the distribution of each allocation among the highway and street systems and among units of government.

V. Activities of the Study Committee

Because of the importance of this survey to the people of Iowa, the Highway Study Committee took definite steps to acquaint as many Iowans as possible with the purposes of this study and to get widespread interest and understanding of the highway problems of this state.

The full committee met 28 times. Interested individuals and groups were invited to appear and present information at the public meetings of the committee. Four regional public meetings were held in Storm Lake, Atlantic, Ottumwa and

Waterloo. Legislators, officials of counties and municipalities, and other groups were specifically invited to attend these meetings, and, in all, about 450 persons attended. At each meeting, ASF and PAS staff members explained the work they were doing to determine this state's highway needs and to explain the financing of our highway systems. Various persons and groups expressed their opinions and ideas, and asked questions, about road problems and finances at these meetings. Highway safety matters were discussed at each meeting, too.

The chairman and other members of the committee appeared before interested groups to explain the purposes, progress and preliminary findings of the study. The Safety Subcommittee met with most individuals and groups about highway safety matters.

The Highway Study Committee kept in touch with the work of the Automotive Safety Foundation and Public Administration Service by working as subcommittees. These subcommittees met periodically with the staff members who conducted the technical studies. By doing this, the committee was able to keep posted on the progress of the studies and the preliminary findings. The subcommittees were:

- 1. Report of ASF: Eldred, chairman, Pierce and Dougherty
- 2. Report of PAS: McCurdy, chairman, Iles and Sutera
- 3. Safety Subcommittee: Hoffman, chairman, Hagedorn, Robinson and Teachout

VI. Report to the 59th General Assembly

The report of the Road Study Committee to the 59th General Assembly presents the views of the Committee with respect to the various recommendations and proposals of the two agencies engaged to conduct the technical studies and offers for the consideration of the General Assembly the recommendations of the Committee with respect to those of the agencies and with respect to other highway matters it believes to be in need of attention at this time.

vi

IOWA'S ROAD NETWORK

Ţ

•

3

1) <u>1</u> 1

Shown on the map on the opposite page are all of Iowa's 99,000 miles of rural roads and principal connections through municipalities. This vast network carries 33 million vehicle miles of travel daily. Organizing roads and streets serving similar purposes into logical systems is necessary for most effective management and equitable financing.

)

}.

Chapter I Primary Highways I. Introduction

The state primary road system is the backbone of the highway transportation service in Iowa. It collects and distributes traffic to and from a multitude of connections with the secondary road and municipal street systems of the state; it interconnects all county seats and main market centers of the state, and through a closely and uniformly spaced net of highways affords highway transporation service to all areas of the state and between adjacent states.

As now constituted, the state primary road system and its extensions into and through municipalities includes a total of 10,498 miles. This mileage, which is slightly more than 9 per cent of the total mileage of rural roads and municipal streets in the state, carries 63 per cent of the total volume of highway traffic on these roads and streets. The rural primary roads, alone carry 50 per cent and the extensions of these roads in municipalities carry 13 per cent of the total traffic. More than 70 per cent of the total rural population and more than 96 per cent of the total population in the cities and towns of the state either are served directly by or are located within three miles of a primary road. More than 700 of the 942 cities and towns and all but a small portion of the approximately 3,600 manufacturing and processing plants in the state are situated similarly. In the performance of their role in the economy of Iowa, the primary roads and their municipal extensions deliver, on the average, 17.6 times the volume of highway transportation service per mile required of the other 91 per cent of the roads and streets of the state.

As a consequence of their importance to highway transportation in Iowa; of their importance to the health and growth of the economy of the state; and, of their importance to the general welfare of the people of the state, the primary roads and their extensions into and through municipalities merit, at all times, the closest attention and the most careful and thoughtful consideration of the General Assembly and of the people of the state.

As an aid in such consideration, the Road Study Committee directs attention to the portions of the Automotive Safety Foundation report, "Iowa Highway Needs," and to those of the Public Administration Service report, "Financing Iowa's Highways," that deal with the primary roads and offers, here, its own views and recommendations with respect to various features of primary needs and finances.

II. Classification of Primary Highways

For the purposes of the engineering analysis of the highway needs, the Automotive Safety Foundation classified the roads and streets of the state on the basis of the functions performed. In this process, roads or streets serving similar functions were grouped together and interconnected into systems thoughout the areas they serve. Each system was assigned to a governmental agency having primary interest in the particular type of service which that system provides. In the engineering analysis itself, standards appropriate to the volume, weight, speed, and nature of traffic served by each system were selected as a basis for the determination of the highway needs of the system. The size of a system was, therefore, a significant factor in the computation of the total sum of its needs.

A. Size and Composition of the Primary Road System

Employing the definition of a primary road as given in Sections 306.2 and 313.2. Code, 1958, it is found that the Iowa primary road system includes 9,374 miles of which 8,706 are state primary roads and 668 miles are interstate highways. Only 183 miles of the latter are open to traffic but the entire mileage of the system in the state has been designated. Additional mileage can be considered, however, as part of the primary road system, for Section 313.21, Code, 1958 provides that the State Highway Commission may construct and maintain extensions of the primary road system within municipalities. For such purposes, these extensions may be

2

treated as primary roads. Considering the 1,081 miles in extensions of the state primary roads and the 43 miles in extensions of the interstate highways in municipalities as parts of the primary road system, the total for the system is found to be 10,498 miles.

In the engineering analysis the Automotive Safety Foundation found that the primary roads, as now designated, perform a variety of functions. Therefore, for the purposes of that analysis, this agency reclassified the various roads in the system, placing them in two groups, one including the roads providing predominantly statewide and the other predominantly local highway transportation service. Roads in the first group serve the larger volumes, heavier weights, and, higher speeds associated with through traffic. It is estimated that this group carries 67 per cent of all rural road traffic on 7 per cent of the rural road mileage. The roads in the second group serve predominantly local traffic and they have the characteristics of the more heavily traveled secondary roads. (Page 29, ASF Report)

On the basis of these and other data indicating such a course, the Automotive Safety Foundation in the report, "Iowa Highway Needs", recommended:

- 1. That the General Assembly direct the State Highway Commission to review the state primary road system and, within one year, select existing and proposed routes, both rural and urban, not to exceed a total of 8,400 miles, that meet the criteria used in the highway needs study for classification as State Primary Roads, to be designated as the official State Primary Road System, and (Fage 32, ASF Report)
- 2. That the General Assembly consider the disposition of existing primary roads failing to meet the criteria for State Primary Roads as defined in the highway needs study, either by returning them to county jurisdiction with appropriate fiscal arrangements or, if continuing them under the jurisdiction of the State Highway Commission, by designating them as a group, wholly separate from other primary roads with a separate allocation of funds for their construction and maintenance

and with standards of improvements limited by law to those appropriate for the Farm-to-Market Road System.

In the opinion of the Road Study Committee, these recommendations seem to have merit principally from a theoretical viewpoint but their adoption appears to be both inadvisable and impractical, at this time, as to do so would

- require extensive new law and changes in existing laws for which more time than is now available for proper preparation and presentation,
- result in an abrupt and extensive change either in the mileage in the primary road system or in the administration of a large portion of that system, and
- 3. require more extensive and abthorative data than are at present available to convince the substantial number of communities and interests to be affected that such action is firmly based on fact, is sound, and is beneficial to both the communities and the state as a whole.

It is the further opinion of the Committee that the selection of standards for the improvement of the various portions of the primary road system is a matter of discretion resting with the State Highway Commission rather than of legislation resting with the General Assembly.

Therefore, the Road Study Committee recommends:

- 1. That the primary road system be continued in its present size and form without limitation on the number of miles to be included in it other than those now imposed upon the State Highway Commission by the provisions of Section 313.2, Code, 1958 or by such other legislation as the General Assembly may now or hereafter adopt, and
- 2. That the 1,902 miles of primary roads, classified by the Automotive Safety Foundation as, "Local Service Primary Roads", and referred to as roads failing to meet the criteria for roads to be included in the selected State Primary Road System, remain in the primary road

RECOMMENDED STATE PRIMARY SYSTEM, INCLUDING FREEWAYS

1 1

The recommended State Primary System is shown on the map on the opposite page. Of this, about 1,900 miles should be improved ultimately to full freeway standards. Proposed freeway routes are shown in black; other State Primary routes in red.

J

system under the jurisdiction of the State Highway Commission without classification or identification either as a special group of roads

or as a separate portion of the existing primary road system,

Table No. 1 contains data for a comparison of the effects of the recommendations of the Automotive Safety Foundation and of those of the Road Study Committee with respect to the size and composition of the primary road system. The total mileage for the system shown as the recommendation of the Road Study Committee is greater than either of the others due to the retention by the Committee of roads which were considered by the Foundation as being replaced by an interstate highway or a state primary freeway.

Table No. 1

Primary Road System Mileage As System is now Constituted and as Affected by ASF and RSC Recommendations

Mileage in Primary Road System

Item	As Now Constituted	As Proposed by ASF	As Recommended by RSC
Regular Primary			
Rural	8,706	5,513 ,	7,547
Urban	1,081	859	1,081
Total	9,787	6,472	8,628
Freeways			
Interstate			
Rural	668	668	668
Urban	43	43	43
Total	711	711	711
State			
Rural	-	1,159	1,159
Urban	-	58	58
Total	-	1,217	1,217
Local Service			
Rural	-	1,601	-
Urban	-	301	-
Total	-	1,902	-
Total Primary			
Rural	9,374	8,941	9.374
Urban	1,124	1,261	1,182
Total	10,498	10,302	10,556

B. Freeway System

Included in the primary road system are some routes which, by virtue of their location, interconnect major metropolitan areas within Iowa and in adjacent states. Consequently these routes are destined to carry on the average, substantially larger volumes, heavier weights, and higher speeds of traffic in predominantly through trip movements than will be found on the other primary roads. These more important routes include all of the interstate highways, approximately, 711 miles, and about 1,217 miles of other primary roads.

To extend to all metropolitan areas of Iowa the same safety, comfort and convenience of movement, and preservation of investment as is being provided for a portion of them by the interstate highways, standards of improvement similar to those being provided in the development of the interstate highways for comparable volumes of traffic are indicated.

To that end, the Automotive Safety Foundation recommended:

1. That the General Assembly enact legislation requiring the State Highway Commission to designate and plan certain state primary road routes, both rural and urban, as a freeway system to be included in the selected State Primary Road System as recommended by the Foundation. (Recommendation 2, Page 33, ASF Report)

The Roads Study Committee concurs in the views of the Automotive Safety Foundations for the necessity of special consideration for certain routes in the primary road system.

Therefore, the Road Study Committee recommends:

 That the State Highway Commission as a matter of policy designate and plan certain state primary road routes, both rural and urban, as a freeway system to be included in the state primary road system, as funds become available for such purposes.

C. Jurisdiction of Primary Road Extensions in Cities and Towns

To provide comparable and consistent state highway service into and through cities and towns served directly by the primary road system, the Automotive Safety Foundation indicated a need for the inclusion of 859 miles of extensions of primary roads in municipalities as a part of the State Primary Highway System as selected in the needs study. It was considered illogical and unreasonable that the responsibilities of the state for this service should disappear at the corporation line of a city or town. It was also noted that current highway laws provide, that the State Highway Commission may construct and maintain these extensions of the primary road system but give it little control of traffic regulation or of use of the streets involved. There are also some legal restrictions as to the type of improvements that can be made by the State Highway Commission on these extensions in some cases.

To provide for comparable and consistent state highway service on the extensions of the primary road system into and through municipalities, the Automotive Safety Foundation recommended:

- 1. That the State Highway Commission be given full administrative and fiscal responsibility for the proposed primary roads into and through all incorporated places served by the selected State Primary Road System similar to the responsibilities the commission now has for primary roads in rural areas. (Recommendation 6, Page 33, ASF Report) Recognizing the merit of this proposal, the Road Study Committee recommends more specifically:
 - That the General Assembly enact legislation providing that the extensions of primary roads into and through cities and towns served by the primary road system be made a part of that road system.
 - 2. That the General Assembly enact legislation giving the State Highway Commission full administrative and fiscal responsibility for the construction and maintenance of improvements on extensions of primary roads in cities and towns; for the regulation of traffic; and for the

erection and maintenance of traffic control devices, such as signals, signs, or pavement markings on such extensions; all from funds provided for the primary road system, and

3. That the General Assembly enact legislation clearly defining the extent of the jurisdiction of the State Highway Commission with respect to extensions of primary roads in cities and towns.

D. Transfer of Highways Out of the Primary Highway Systems

Existing laws provide for the addition of roads to the primary road system at the discretion of the State Highway Commission under conditions set forth in Section 313.2, Code, 1958, and for the transfer of roads from that system to county jurisdiction in accord with provisions of Chapter 212, Acts of the 58th General Assembly. It is the opinion of the Automotive Safety Foundation as given in the report, "Iowa HighwayNeeds", that the restriction of Chapter 212 limiting such transfer to roads carrying less than 400 vehicles per day either discourages new facilities or requires the state to maintain increasing mileages of state primary roads if such facilities are built.

Consequently, the Automotive Safety Foundation recommended:

1. That the State Highway Commission be given full authority to transfer to county or city jurisdiction any road or street whose primary function has been taken over by construction or improvement of other facilities, such as a parallel route or any other location which diverts appreciable traffic from the old route. (Page 33, ASF Report)

It is the opinion of the Road Study Committee that some legal control of the transfer of roads into or out of the primary road system is advisable but that the provisions of Chapter 212. Act of the 58th General Assembly with respect to traffic may be unduly restrictive.

Therefore, the Road Study Committee recommends:

1. That the General Assembly amend Chapter 212, Acts of the 58th General

Assembly to provide that, when the State Highway Commission constructs

or relocates a highway near and roughly parallel to an existing primary highway, it may transfer the old highway to the jurisdiction of the county, if, for one year following the construction or relocation of the new highway, said old highway has an average daily traffic of less than 600 vehicles per day and if said old highway is either in or placed in a good state of repair, and

2. That the General Assembly enact legislation providing for the location and relocation of extensions of primary roads in cities and towns to be at the discretion of the State Highway Commission and for the transfer of its responsibility for construction, maintenance and traffic control on extension of primary roads in cities and towns to the cities and towns to be without restrictions.

III, Primary Highway Needs

For primary highways, the key feature of the Automotive Safety Foundation Report, "Iowa Highway Needs", is a summary of highway needs expressed in terms of the average annual costs for each of three 20 year improvement programs, each involving a different length of time or, "catch-up", period for the elimination of the backlog of deferred or urgently needed work, that is, improvements needed now.

A. Annual Costs of Proposed State Primary Road System

Average annual costs of the programs for the 8,400 mile State Primary Road System proposed by the Automotive Safety Foundation, including those for both the rural and urban portions of the system are shown in Table No. 2.

From these data it is obvious that the average annual costs as well as the total costs of the three programs are approximately the same. The difference in the programs is in the variation in the annual costs during and following the catch-up periods, such costs being substantially greater than the average during that period and substantially smaller following it.

Table No. 2

Average Annual Costs for Each of Three 20-year Programs

For 10-year catch-up period

First ten years	Second ten years	Average for 20 years
\$147,070,000	\$72,404,000	\$110,237,000
	For 15-year catch-up period	
First fifteen years	Last five years	Average for 20 years
\$127,352,000	\$62,024,000	\$111,020,000
	For 20-year catch-up period	
First twenty years	-	Average for 20 years
\$111,066,000	-	\$111,066,0 00

(Page 38, ASF Report)

B. Annual Costs of Local Service Primary Roads

Average annual costs for the 1,902 mile portion of the existing primary road system including those roads classified by the Automotive Safety Foundation as Local Service Primary Roads were computed only for one 20-year program. Such costs over that period for this portion of the existing primary road system and its extensions in cities and towns are shown in the report to be \$5.038.150 per year.(Page 45, ASF Report)

C. Annual Costs of Existing Primary Road System

These combined with those for the proposed State Primary Road System give the total average annual costs for the existing primary road system for a 20-year backlog catch-up period as \$116,104,150. See Table No. 3.

Table No. 3

Primary Road System Average Annual Costs of 20-Year Program

ASF Proposed Primary Road System	Local Service Primary Roads	Total Existing Primary Road System
\$ 65,283,000	\$ 2,389,450	\$ 68,672,450
9,385,000	833,750	10,218,750
4,448,000	161,100	4,609,100
\$ 80,116,000	\$ 3,384,300	\$ 83,500,300
\$ 26,627,000	\$ 1,216,750	\$ 27.843.750
2,716,000	358,050	3.074.050
1,607,000	79,050	1,685,050
\$ 30,950,000	\$ 1,653,850	\$ 32,603,850
	20. JA	· · · · · · · · · · · · · · · · · · ·
\$ 92,910,000	\$ 3,605,200	\$ 96.516.200
12,101,000	1,191,800	13.292.800
6.055.000	240.150	6.295.150
\$111.065.000	\$ 5.038.150	\$116.104.150
	ASF Proposed Primary Road System \$ 66,283,000 9,385,000 4,448,000 \$ 80,116,000 \$ 26,627,000 2,716,000 1,607,000 \$ 30,950,000 \$ 92,910,000 \$ 92,910,000 \$ 92,910,000 \$ 30,950,000 \$ 111,065,000	ASF Proposed Local Service Primary Road System \$ 66.283,000 $$ 2,389,4509,385,000 $ $$ 333,7504,448,000 $ $161,100$ 80,116,000 $ $$ 3,384,300$ 26,627,000 $ $$ 1,216,7502,716,000 $ $$ 3,384,300$ 26,627,000 $ $$ 1,216,7502,716,000 $ $$ 3,384,300$ 26,627,000 $ $$ 1,216,7502,716,000 $ $$ 3,384,300$ 30,950,000 $ $$ 1,653,850$ 30,950,000 $ $$ 1,653,850$ 92,910,000 $ $$ 1,653,850$ 3,606,2001,191,8006,055,000 $ $$ 40,150$ 111,066,000 $ $$ 5,038,150$

D. Total Costs for Existing Primary Road System

Total costs for a 20-year program with 20-year backlog catch-up period for the existing primary road system and its extensions in cities and towns are as follows:

For 8,400 miles State Primary Road System Proposed by ASF

Regular Primary (6,472, mi) Interstate and Freeways (1,628 mi.) <u>1</u> / Total	\$1,134,700,000 1,086,600,000 \$2,221,300,000
For 1,902 mile Local Service Primary Roads	\$ 100,760,000
Total exixting Primary Road System	\$2,322,060,000

1/ approximately 310 miles of proposed freeway system to be improved after 1980.

E. Rural-Urban Division of Total Costs of Primary Roads

Classification of the total costs of 20-year program with catch-up of backlog spread over the entire program are given in Table No. 4.

Table No. 4

Primary Road System Total Costs of 20-Year Program

ASF Primary Road System	Amount
Rural	\$1,602,320,000
Municipal	619,000,000
Total	\$2,221,320,000
Local Service Primary Roads	Amount
Rural	\$ 67,686,000
Municipal	33,077,000
Total	\$ 100,763,000
Total Existing Primary Road System	Amount
Rural	\$1,670,006,000
Municipal	652,077,000
Total	\$2,322,083,000

F. Capital Investment Costs

Capital investment costs of the 20-year program are shown in Table No. 5.

Table No. 5

Primary Road System Capital Investment costs for Construction

Item	Right of Way	Roads	Bridges	Total
Propos	ed State Primary	Road System		
Rural Urban Total	\$119,227,000 150,755,000 269,982,000	\$ 975,211,000 248,035,000 1,223,246,000	\$231,200,000 133,734,000 364,934,000	\$1,325,6 38 ,000 532,524,000 1,858,162,000
Propos	ed Local Service	Primary Roads		
Rural Urban Total		\$ 35,684,000 19,769,000 55,453,000	\$10,827,000 2,439,000 13,266,000	\$ 45,511,000 22,208,000 68,719,000
Total 1	Existing Primary	Road System		
Rural Urban Total	\$119,227,000 150,755,000 269,982,000	\$1,010,595,000 267,804,000 1,278,699,000	\$242,027,000 136,173,000 378,200,000	\$1,371,149,000 554,732,000 1,926,881,000

269,982,000 1.278,699,000

12

<u>.</u>

5

BACKLOG NEEDS-STATE PRIMARY ROADS

)

Ì

1

1

)

About 2,500 miles of Rural Primary Roads, shown on the map on the opposite page in red and black, fail in a substantial way to meet the minimums considered tolerable for today's traffic. On these road sections there is a backlog of deferred construction, the estimated cost of which totals \$373 million. Locations of the most urgently needed "top priority" work are shown in black. They constitute about on-third of the total backlog needs.

נ נ נ נ נ נ נ

)

)

)

G. Backlogs of Primary Road Needs

Further analysis of these data reveals that the costs of the backlog of deferred and urgently needed work on the existing primary road system are as shown in Table No.

Table No. 6

Backlog of Needs on Primary Road System

Item

6.

Amount of \$ of Total Needs Construction Costs Proposed State Primary Road System

\$2**5**2,000,000

Kural	\$373,000,000		
Municipal	144,000,000	27	
Total backlog	\$517,000,000	28	

Proposed Local Service Primary Roads

Rural	\$ 28,629,000	63	
Municipal	13,248,000	60	
Total backlog	\$ 41,977.000	61	
U	41,877,000		
Total Em	Primary Road Systems		
For Proposed State	And Local Services		
Rural	\$ 401,629,000	29	
Municipal	157,248,000	28	
Total	\$ 401,629,000	29	29/
	550 077 000	•	

Total \$401,629,000 558,877,000 These data reveal that the backlog of deferred and urgently needed work on the rural portion of the existing primary road system is about 29 per cent of its total basic construction needs for the next 20 years and that the backlog on the extensions in cities and towns is about 28 per cent of the basic construction needs of that portion of the system for that period, all as determined in the engineering analysis of the primary road system and its extensions by the Automotive Safety Foundation.

H. Addition of Costs of Local Service Roads

The Foundation treated its proposed State Primary Road System and those roads which it classified as Local Service Primary Roads separately throughout the report, "Iowa Highway Needs".

The Road Study Committee prefers that the data be combined to show the situation with respect to the needs of the existing primary road system and reccommends: 1. That the various costs pertaining to the 1,902 miles of local service primary roads be added to those for the State Primary Road System proposed by the Automotive Safety Foundation which action produces as the total cost of improving the existing primary road system, the sum of \$2,221,3 million and \$100.8 million or \$2,322.1 million.

IV. Primary Highway Finance

The Public Administration Service, in its report, "Financing Iowa's Highways", showed that, with the present method of dividing revenues for highway purposes, the estimated amounts available for the primary road system would average \$110,400,000 annually over the next 20 years. During that period, this amount would be, on the average, \$666,000 per year or a total of \$13,320,000 less than the amount (\$2,221.3 million) required to meet the needs of the State Primary Road System proposed by the Automotive Safety Foundation and \$5,704,150 per year or a total of \$114,083,000 less than the amount (\$2,322.1 million) required to meet the needs of that system plus those of the local service primary roads.

A. Primary Road Share Road Use Tax Fund

Under the present method of dividing revenues for highway purposes, the primary road system receives approximately 50 per cent of the revenue received from motor vehicle and motor vehicle fuel taxes. The Public Administration Service suggests, on the basis of its findings in an earnings credit analysis, that the primary road system receive 55 per cent of the revenue derived from such taxes. This allocation of 55 per cent of highway user taxes combined with the expected Federal-Aid for primary roads would be slightly more than the amount required for the 20-year program as determined from the needs study. The Public Administration Service, therefore, further suggests that the small surplus, amounting to about one per cent, be used either to partly alleviate debt service requirements, if resort is had to bond issues for accelerating the elimination of the backlog of needs, or if the need arises for other contingencies. It also directs attention to the dependency of the primary road system on Federal-Aid and notes that about one third of the expected average annual revenue (\$35 million of \$110.4 million) will be Federal-Aid. (Pages 42,57, and 58, PAS report)

B. Adoption of 20-Year Program

Duly considering the situation with respect to expected funds for primary roads, the uncertainity of future costs of construction, the probable effects of other factors, and the advantages of a uniform rate of expenditure, the Road Study Committee recommends:

- 1. That the General Assembly enact legislation adopting the 20-year program for the satisfaction of the needs of the primary road system with the elimination of the backlog spread over the entire period of the program and leaving the probability of accomplishing the goal set in the proposed program in that period or a lesser time dependent upon the amount of money made available by the legislature, upon costs of construction, and upon other factors which are indeterminate or unknown at this time, and
- 2. That the General Assembly enact legislation providing that subsequent General Assemblies re-examine, periodically, the progress being made under this 20-year program.

C. Bond Issue for Primary Interstate Highways

The Public Administration Service Report, "Financing Iowa's Highways", states that it is both equitable and economically sound to use bonds to finance a speed-up in construction such as that proposed by the needs study alternatives (Presumably those employing 10 year and 15-year backlog elimination periods) to spread the 20year cost of the program over the entire period. (Page 46, PAS Report)

Noting this suggestion, the Road Study Committee recommends:

1. That the General Assembly enact legislation enabling and authorizing the State Highway Commission to issue bonds in such form and amount and at such time as the commission deems necessary for early completion of the interstate and other primary highways, these bonds to be redeemed and serviced wholly out of allocations of road use tax funds and from Federal-Aid allotments, subject to the approval of the Executive Council or the Budget and Financial Control Committee.

D. Removal of Limit on Use of Primary Road Funds on Municipal Extensions

The engineering analysis of highways needs indicates that approximately 29 per cent of the total estimated costs for basic construction on the primary road system are for extensions of these roads in cities and towns. Therefore, it is obvious, that in the execution of the proposed 20-year program a greater or lesser portion of primary road construction funds may be required for the work undertaken on these extensions in any given year of the program. Present law limits the expenditure for such work to 25 per cent of the funds available for construction in any one year. This limitation would interfere with proper execution of the 20-year program. The Automotive Safety Foundation suggests that it be rescinded and that the amount to be expended in any one year should be left to the discretion of the State Highway Commission. (Page 49, ASF Report)

The Road Study Committee concurs in these suggestions and recommends:

 <u>That the General Assembly enact legislation eliminating the provisions</u> of Section 313.21 which restrict the expenditure of primary road funds on extensions of primary roads in cities and towns in any one year to <u>a maximum of 25 per cent of the primary road construction fund.</u>

V. Primary Highway Management

The Automotive Safety Foundation states that one difficulty prevalent among commission forms (of highway management) is a tendency for a commission to make operating decisions that should be the responsibility of an executive officer and, further, that the law in Iowa, apparently stemming from early days when, "The Commission", was practically the entire department, still fails to define properly the policy making functions of the State Highway Commission as distinct from administrative responsibilities. The Foundation further noted that, in the absence
of any reasonably clear-cut distinction between policy and administration, there is much room for sincere differences of opinion as to respective responsibilities and that the system works as well as it does in Iowa reflects credit on both commission members and employees, but rests too much on individuals and their philosophies and characteristics. (Page 68, ASF Report)

A. State Highway Over-all Management

Consequently the Automotive Safety Foundation recommended, that legislation be enacted to define the proper role of the Iowa State Highway Commission as a policy-making body and to constitute an Iowa State Highway Department, whose chief executive offices should be the Chief Engineer, responsible to the Commission for carrying out its approved policies, for operating the Department, and for recommending revised policy - all within the framework of a statement of legislative purpose defining the general powers and duties of the department. (Page 69, ASF Report)

The Road Study Committee concurs in the views of the Automotive Safety Foundation with respect to Iowa laws pertaining to the duties of the State Highway Commission and recommends:

> 1. That the General Assembly enact legislation conforming to the recommendation of the Automotive Safety Foundation for a definition of the responsibilities of the State Highway Commission, for the constitution of a state highway department under the jurisdiction of the commission, for a definition of the duties of said state highway department, and for a distinction in law between the policy-making functions of the State Highway Commission and the administrative responsibilities and duties of the state highway department.

Further with respect to primary highway management, the Road Study Committee recommends:

 That the State Highway Commission as a matter of policy include in the state highway department a business administration division headed by a qualified administrator as distinguished from the engineering

and construction divisions in the commission.

B. Internal Management of the State Highway Department

The Automotive Safety Foundation noted that the State Highway Commission was in process of examination and reorganization of the state highway department and offered its opinion that the difficulties always encountered in such reorganization can be smoothed out through more continuous and formal study of the mechanics of over-lapping functions and more precise spelling out of limits of responsibility and the joint operations that have to be carried out. The Foundation further suggested that the commission should consider further decentralization (of operations) including design functions and should clarify responsibilities along staff and line principles.

As a step in that direction, the Automotive Safety Foundation recommended:

 That the State Highway Commission appoint one urban engineer as an assistant to each of the commissions district engineers. (Page 70, ASF Report)

Concurring in these views, the Road Study Committee recommends:

1. That the State Highway Commission, as a matter of policy, appoint one <u>urban engineer as an assistant district engineer in each of the district</u> <u>offices of the commission for the further decentralization of the work</u> <u>of the commission in connection with urban problems which will demand</u> <u>increasing attention with the expansion and execution of the highway</u> <u>improvement programs of the state.</u>

VI. Miscellaneous Matters Relating to Primary Highways

The Road Study Committee considered a number of miscellaneous unrelated items pertaining to primary highways that fail to lend themselves readily to arbitrary classification. These are presented here.

A. Intergovernmental Relations

Development and maintenance of highway transportation facilities require a high degree of coordination among all agencies of government. Each has its primary

obligation for the road or street systems under its jurisdiction, but each must recognize its relation to the others and must have always in mind that they are each engaged in the solution of a sector of a mutual problem, the provision of highway transportation service to the public.

The State Highway Commission and the counties of Iowa have a long history of harmonious and effective cooperation in attempts at solution of this problem. For cities and towns there is little similar state interest in city or town problems indicated either in the law or in practice. However, the magnitude of street needs in municipalities, the importance of sound development of adequate street transportation for all Iowa people, and the responsibilities of state government to all citizen call for specific state action.

Consequently, the Automotive Safety Foundation recommended improvements in the intergovernmental activities of the State Highway Commission in relation to the general management problems of municipalities and counties and particularly with the municipalities with whom contacts have been relatively meager as compared to those with the counties. (Page 71, ASF Report)

The Road Study Committee recommends:

 That the State Highway Commission as a matter of policy expand and improve its relations with the municipalities and counties of the state for cooperation in the solution of the mutual problem of providing adequate highway transportation service to all of the people of <u>lowa</u>

B. <u>Diagonal State Highways</u>

There are a number of traffic movements in Iowa that may be, within the near future, sufficient in volume and importance to justify the construction of a highway in close proximity to the desired line of travel for maximum efficiency of these movements. A number of these desired lines of travel connect major metropolitan areas so located as to require an alignment diagonally across the rectangular network of existing highways in Iowa. Current law prevents the construction of a

highway on such alignment to cities over 100,000 population. This is a handicap to long range planning for the efficient movement of traffic between major metropolitan areas of this size or greater.

Consequently, the Automotive Safety Foundation recommended:

 That the General Assembly enact legislation repealing the law prohibiting diagonal roads to cities over 100,000 population. (Recommendation 3, Page 33, ASF Report)

The Road Study Committee concurs in the substance of this recommendation and more specifically recommends:

 That the General Assembly enact legislation repealing that portion of Section 313.8 which provides that the State Highway Commission shall not purchase right-of-way and construct a new system of diagonal highways radiating from any city with a population over one hundred thousand.

C. Acquisition of Right-of-Way

From the engineering analysis of highway needs of the primary road system, it was determined by the Automotive Safety Foundation that, at 1959 prices, the right of way for the proposed rural and urban state primary road system would require an expenditure of about \$270,000,000 over the next 20 years. Acquisition of right of way is at best, a tedious and time consuming operation and, in Iowa, has a number of features which interfere with efficient and expeditious administration of a construction program.

. _

> Noting these deficiencies and considering the magnitude of the expenditures for right of way and the importance of better procedures to highway administration. and to efficient execution of highway improvement programs the Automotive Safety Foundation recommended:

> > That the General Assembly enact legislation authorizing advance purchase of right of way by the State Highway Commission, any city, or any town some years ahead of actual construction and establishing

a revolving fund within the commission, city, or town to finance such purchases,

- 2. That the General Assembly enact legislation enabling and authorizing the State Highway Commission to exchange property for right of way purposes.
- 3. That the General Assembly enact legislation extending the authorization for immediate possession pending final settlement, now provided for certain public purposes, to include highways as one of such purposes to permit immediate possession of right of way to aviod possible long delays in construction. (Page 71, ASF Report)

The Road Study Committee concurs in these recommendations of the Foundation pertaining to the acquisition of right of way for highways and recommends:

 That the General Assembly enact legislation incorporating the recommendation of the Automotive Safety Foundation with respect to acquisition of right of way for highways as presented on page 71 of the report. "Iowa Highway Needs."

Chapter II

Secondary Highways

I. Introduction

The secondary highways of Iowa provide direct access to every square mile of the area and to all of the basic resources of the state, particularly its rich lands, the most important of these resources.

Access to a public highway is essential to farm operations and to a standard of living on farms comparable to that enjoyed by workers in other industries in the state. Farm operators depend exclusively upon highway transportation for initial movement of farm crops, livestock, and livestock products to market. They depend upon highway transportation for services of many kinds and for access to schools, churches, and to community centers.

Farming is the leading industry in Iowa. In units operated, in employment and exploitation of natural resources, in number of workers employed, in total personal income received, and in contributions to the economy of the state and nation, it surpasses any other single industry in the state.

On account of their importance to farm operations, the secondary roads are an essential feature of the economy of Iowa. The extent and condition of these roads has a direct influence upon the health and growth of the economy of the state.

There are approximately 91,000 miles of these roads in the state. They constitute approximately 83 per cent of the total mileage of roads and streets and they carry approximately 18 per cent of the total volume of traffic on the roads and streets in the state. Their contribution to the health and growth of the economy and to the general welfare of the people, although lacking objective units of measurement, can be safely assumed to be enormously greater than is indicated by the proportion of the total highway usage which they serve.

II. Classification of Secondary Highways

In a mileage of highways as extensive as that found for the secondary highways of Iowa, it is to be expected that the group, as whole, affords a wide variety of highway transportation services and requires a variety of standards of improvement for the provision of these services. Public funds for highways may be employed most efficiently by grouping the roads into systems, each identified with particular function, and establishing standards of improvements for each system appropriate to the services demanded of it.

A. Present Secondary Highway Classifications

The necessity for classification of highways for administrative purpose was recognized in Iowa a half century ago and various systems of classification roughly based on the functions served by the roads have been in effect continuously since that time.

Those in effect at this time group the secondary highways in two interconnected systems, the Farm-to-Market Road System, which includes approximately 34,000 miles, and the Local Secondary Road System which includes approximately 56,700 miles. The Farm-to-Market Road System includes the more important secondary roads having generally the larger volumes of traffic and serving as collectors and distributors of traffic between the local roads and main market centers which may be either on the Farm-to-Market or on the state primary road system. The Local Secondary Road System provides direct access to rural homesteads and supplements and extends the services of the Farm-to-Market and the Primary Road Systems.

B. <u>Re-Classification of Secondary Highways</u>

In the engineering analysis for the determination of the highway needs of Iowa, the Automotive Safety Foundation concluded that the Farm-to-Market Road System, as now constituted, served two distinctly different functions. Consequently, for the purposes of the needs study, the roads in this system were reclassified into two groups, County Trunk Roads and County Feeder Roads on the

basis of the functions served by the roads.

The County Trunk Road System thus selected included those roads which interconnect smaller towns, shipping points, and market centers within each county and adjoining counties. It also provided connections with other County Trunk Roads and State Primary Roads to form an interconnected and integrated network of main rural roads with an average spacing between routes of five to six miles. Routes on this system were found to carry generally the heaviest volumes of traffic found on the secondary roads within the county. These routes included approximately 12,000 miles of secondary roads or approximately 11 per cent of the total mileage of roads and streets in the state and served approximately 10 per cent of the total traffic.

The County Feeder Road System included those roads delivering traffic either to the County Trunk System or to the State Primary Road System. Average spacing between routes, including the County Trunk and State Primary Roads, was found to be from two to three miles. This system included approximately 20,000 miles of secondary roads or approximately 18 per cent of the total mileage of roads and streets in the state and was found to serve approximately 4 per cent of the total traffic.

The remaining secondary roads omitted from either the County Trunk or County Feeder Road Systems were classified as Local Secondary Roads. Included in this classification, as well as roads formerly Local Secondary Roads, were 2,300 miles of the existing Farm-to-Market Road System which are not Federal Aid Secondary Roads and 500 miles of Federal-Aid Secondary Roads which are not Farm-to-Market Roads. As finally constituted the proposed Local Secondary Road System included 58,500 miles, that is, approximately 53 per cent of the total mileage of roads and streets in the state and it was found to serve approximately 4 per cent of the total traffic. (Pages 14, 30, and 32, ASF Report)

Concluding that the reclassification of secondary roads adopted for the purposes of the needs study would also be of benefit in the administration of

the proposed improvement programs, the Automotive Safety Foundation recommended:

- 1. That the General Assembly enact legislation requiring that all roads included in the Farm-to-Market Road System as selected in the needs study be also included in the Federal-Aid Secondary Road System and requiring that any road included in the Federal-Aid Secondary Road System reasonably meet the criteria for the Farm-to-Market Road System as defined in that study, in order that these two systems may be coincident, and
- 2. That the General Assembly enact legislation requiring the subdivision of the revised Farm-to-Market Road System into a County Trunk and a County Feeder Road System on the Basis of criteria to be developed jointly by the State Highway Commission and representatives of the Iowa County Engineers Association with final approval by the State Highway Commission; requiring the preparation and submission of a map by each county showing the roads selected for initial inclusion in the County Trunk, County Feeder, and Local Secondary Road Systems; and providing for approval of said map by the board of supervisors and for review and final approval by the State Highway Commission upon which it would become the official map of these several systems in the county until such time as changing conditions within the county may require revisions of the systems. (Recommendations 9 and 10, Page 34, ASF Report)

The Road Study Committee recommends:

1. That the General Assembly enact legislation providing for the subdivision of the present Farm-to-Market road system into a county trunk and county feeder road system on the basis of criteria to be developed by the State Highway Commission and the Iowa County Engineers Association; providing for the designation of all other secondary roads as local secondary roads; providing for the preparation and submission of a map

BAISTING STATE PRIMARY AND FARM-TO-MARKET SYSTEMS

}

)

J

Shown on the map on the opposite page are Iowa's State Primary Roads in black and Farm-to-Market roads in red. State Primary Roads, including extensions through municipalities, total 9,787 miles in length. The established Farm-to-Market Systems of the 99 counties total 33,973 miles.

•

J

J.

of each county showing the roads selected for initial inclusion in the county trunk, county feeder, and local secondary road systems of the county and providing for the approval of said map by the board of supervisors and for the review and final approval by the State Highway Commission upon which said map becomes the official map of these several systems in the county until such time as changing conditions within the county may require revisions of the systems.

Table No. 1

Reclassification of Secondary Highways

System	Mileage as now Classified	Mileage as Reclassified by ASF	Mileage as Reclassified by RSC
Farm-to-Market Roads			
County Trunk Roads		12,087	13,000
County Feeder Roads		20,100	20,973
Total	33,973	32,187	33,973
Local Secondary Roads	56,714	58,500	56,714
Total All Roads	90,687	90,687	90,687

D. Standards for Secondary Highways

The Automotive Safety Foundation chose, as a basis for the determination of needs and the computations of costs of improvements, standards designed for the volumes, weights, speeds, and types of service identified with each highway system classification.

Considering these the minimum for use in the execution of the proposed improvement programs, the Foundation recommended:

1. That the General Assembly enact legislation requiring the establishment of minimum design standards by counties and cities, subject to the approval of the State Highway Commission, for the improvement of the roads and streets in each classification, other than Local Secondary Roads or Access Streets and requiring the use of such standards or higher standards in the construction of improvements financed in whole or in part with funds allocated to the county or city from road use tax funds or other state funds. (Recommendation 11, Page 34, ASF Report)

The Road Study Committee recommends:

1. That the General Assembly enact legislation requiring the use of the appropriate current standard specifications of the State Highway Commission for design and construction of improvements on the proposed county trunk, county feeder, and local secondary road systems as the minimum requirements, and, in the case of those roads which are eligible for Federal-Aid Secondary Road Fund participation, requiring as the minimum standards those which comply with standards of the U.S. Bureau of Public Roads and qualify these roads for such participation.

III. Secondary Highway Needs

The key feature of the portion of the Automotive Safety Foundation report, "Iowa Highway Needs", pertaining to secondary highways is the summary of needs expressed in terms of annual or total costs of the programs proposed for the improvements of these highways.

Within the next 20 years, about two thirds of the 91,000 miles of county roads will require some form of improvement, ranging from simple gravel or stone resurfacing, to construction of new heavy duty roadway surfaces. Also it is estimated by the Automotive Safety Foundation that 53 per cent of the 28,000 bridges on the secondary roads will have to be replaced or rebuilt in that period. (Page 58, ASF Report)

A. Average Annual Costs for Secondary Highways

From examination of the data showing average annual costs for each of the three 20-year improvement programs for secondary highways developed in the needs study, it is found that there is little difference in them over the period as a whole, the difference being in the early years of those programs in which

consideration is given to the elimination or "catch-up" of the backlog of deferred or urgently needed work within a period of less than 20-years. Distribution of this work over the entire 20-year period provides for a constant average annual cost.

All County Roads and Structures Average Annual Costs of Alternative Programs

	*10-Year Catch-Up Period		*15-Year <u>Catch-Up Period</u>		*20-Year Catch-Up Period
	First 10 Years	Next 10 Years	First 15 Years	Next 5 Years	
County Trunks					
Construction Maintenance Administration	\$45,535,000 6,137,000 2,701,000	\$4,955,000 6,463,000 607,000	\$31,594,000 6,171,000 1,988,000	\$ 4.229.000 6,500.000 550.000	\$24,406,000 6,178,000 1,608,000
Total	\$54,373,000	\$12,025,000	\$39,753,000	\$11,279,000	\$32,192,000
County Feeders					
Construction Maintenance Administration	\$32,543,000 10,169,000 1,713,000	\$14,595.000 10,630,000 1,008,000	\$27,100,000 10,201,000 1,502,000	\$11,461,000 10,773,000 910,000	\$23,157,000 10,213,000 1,335,000
Total	\$44,425,000	\$26,233,000	\$38,803,000	\$23,144,000	\$34,705,000
Local Roads					
Construction Maintenance Administration	\$21,412,000 18,344,000 1,194,000	\$21,412,000 18,344,000 1,194,000	\$21,412,000 18,344.000 1,194,000	\$21,412,000 18,344,000 1,194,000	\$21,412,000 18,344,000 1,194,000
Total	\$40,950,000	\$40,950,000	\$40,950,000	\$40,950,000	\$40,950,000
All County Roads					
Construction Maintenance Administration	\$99,490,000 34,650,000 5,608,000	\$40,962,000 35,437,000 2,809,000	\$80,106,000 34,716,000 4,684,000	\$37,102,000 35,617,000 2,654,000	\$68,975,000 34,735,000 4,137,000
Total	\$139,748,000	\$79,208,000	\$119,506,000	\$75,373,000	\$107,847,000

*Each alternative program for County Trunks and County Feeders includes the same amount for basic improvements necessary to remedy existing intolerable conditions. For that amount, termed the "backlog," cost to remedy in 10 years is twice the annual cost required if the work were spread over 20 years. Other costs in each program are for new needs, not now existing, that will arise in the respective periods, and for maintenance and administration. See text for discussion of Local Roads.

(Page 58, ASF Report)

-

B. Total Costs for Secondary Highways

Since there is little difference in average annual costs, there is little difference in total costs of the proposed programs. Data for the 20-year program using a 20-year catch-up period are shown in Table No. 3 for a comparison of the total costs for the different systems.

Table No. 3

Total Costs for Secondary Highways

20-Year Program

System

Total Costs

County Trunk Roads	\$ 643.84 million
County Feeder Roads	694.10 million
Local Secondary Roads	819.00 million

Total

\$ 2,156.94 million

C. Capital Investment Cost for Construction

The total capital investment cost for basic construction and for construction on roads built early in the 20-year period are given in Table No. 4

Table No. 4

Capital Investment Cost for Construction

System

Investment

County Trunk	\$ 488,120,000
County Feeder	463,140,000
Local Secondary Road	428,240,000

Total

\$1,379,500,000

(Page 59, ASF Report)

Comparison of data in Table No. 3 and Table No. 4 reveals that capital investment cost for construction is approximately 64 per cent of the total costs over the 20-year program period. This is a relatively large proportion of the total costs and reflects the inadequacy of the improvements on the County Trunk and County Feeder Road Systems for the services now demanded of them.

D. Backlog of Work on Secondary Highways

Improvements needed now constitute the backlog of work needed on the secondary highways. For the County Trunk Road System, the backlog is responsible for approximately \$340 million or 70 per cent of the total capital investment: cost for construction and for the County Feeder Road System the backlog is responsible for approximately \$139 million or 30 per cent of such cost. Determination of the backlog for the Local Secondary Road System was omitted as there is less urgency involved in projects for this sytem which has for the most part, its major needs filled to at least minimum requirements. The problem for this system is rebuilding, some part to higher but for the most part to standards of existing facilities.

E. Distribution of Needs Among Counties

Examination of the data for individual counties reveals uniformity in the future needs among the counties. Past progress in some counties has been slow and in others rapid. Counties which have done a good job in the past will require more reconstruction, shouldering, and resurfacing in the future. Others will require more grading and new and higher types of surfacing which they have yet to construct, for the first time but less rebuilding and resurfacing. These differences tend to equalize over any long period of years, such as that used for the programs developed in this study.

On the basis of the indication of uniformity of the future needs of the secondary roads among the counties of the state, the Road Study Committee finds continuation of the equalization fund to be without justification and, therefore, on its own motion recommends:

That the General Assembly enact legislation amending Section 312.5, Code, 1958, to eliminate the equalization fund.

IV. Secondary Highway Finance

A. Present Method of Division of Highway Funds

Continuation of the present methods for division of funds for highway

purposes over the next 20 years would provide the secondary roads with an annual average income of \$105,000,000 or an average of \$2,847,000 less than average annual costs of the 20-year program developed in the needs study.

Present sources of revenue for secondary roads are property taxes, road user taxes, federal-aid, and miscellaneous contributions and assessments. If continued in the present form over the next 20-years, property taxes would contribute yearly and average of \$35,750,000, or 34 per cent of a total annual income of \$105,000,000; road user taxes, \$61,260,000 or 58 per cent; federalaid \$6,930,000 or 7 per cent, and miscellaneous sources, \$1,060,000 or 1 per cent of that average annual income for secondary highways.

B. Proposed Method of Division of Highway Funds

Under the present method of dividing funds for highway pruposes, the secondary roads reveive 50 per cent of the Road Use Tax Fund available for allocation under the formula provided in Sections 312.3 and 312.5, Code, 1958. The Public Administration Service in the highway fiscal study proposed that this allocation be reduced to 30 per cent of the Road Use Tax Fund. The effect of this reduction over the next 20 years, with the situation with respect to other sources of secondary road funds continuing in the present form, would be to reduce the average annual income for secondary roads to \$88,300,000 or \$19,147,000 less than the amount required to meet the average annual costs of the 20-year improvement program developed in the needs study for these roads. The Public Administration service suggests that the deficit be covered by approportions from the state general fund. (Pages 30, 51, 57, and 61, PAS Report)

The Road Study Committee considers such an extensive change in the method of division of funds for highway purposes to be both impractical and inadvisable at this time and offers its own recommendation on this subject in a subsequent chapter of this report.

C. <u>Distribution of Road Use Tax Fund Allocations Among Counties</u> It is presumed that an allocation of the Road Use Tax Fund will continue to

be made for secondary roads.

Therefore, the Road Study Committee recommends:

1. That the General Assembly enact legislation providing that whatever portions of the road use tax fund may be either now fixed or hereafter provided for use on secondary roads be divided into two parts, one part consisting of 60 per cent of said portion for distribution among the counties on the basis of need as determined by the Automotive Safety Foundation in the highway needs study and, one part, consisting of 40 per cent of said portion, for distribution among the counties on the basis of area as now provided in Section 312.3, Code, 1958, for the distribution of such funds among the counties for secondary roads.

D. Farm-to-Market Road Fund

The Road Study Committee proposes to continue the specific assignment to the Farm-to-Market road system of a portion of the allocation to counties for secondary roads, primarily to match federal-aid for such roads and, therefore, recommends:

1. That the General Assembly enact legislation providing that 25 per cent or \$12,000,000, whichever is the larger of whatever allocation of the road use tax fund may be now fixed or hereafter provided for secondary roads, be placed in the Farm-to-Market road fund to match federal-aid for secondary roads before any distribution of said allocation among counties is made and that both the amount so set aside in the Farm-to-Market road fund and the remainder of the allocation for secondary roads be each divided into two parts, one part a. Consisting of 60 per cent of the amount, in each case, for distribution among the counties on the basis of needs as

determined by the Automotive Safety Foundation in the report,

"Iowa Highway Needs", and, one part,

b. Consisting of 40 per cent of the amount, in each case, for distribution among the counties on the basis of area.

E. Bonds for Secondary Highways

Permanent construction on heavily traveled secondary roads has been found to be more economical in both operation and maintenance than other less durable types of construction but the execution of such projects requires greater expenditures than are available on an annual basis.

To take early advantages of the economies of permanent construction and to accelerate secondary road improvement programs, the Road Study Committee recommends:

1. That the General Assembly enact legislation providing for the issuance of general obligation or revenue bonds by the counties, subject to favorable vote of the people of the county in each case, for the construction of permanent types of roadway surfacing on secondary roads, said bonds to be redeemed and serviced from anticipated county allotments of road use tax funds for secondary roads.

V. Management of Secondary Highways

The scope and size of the secondary highway improvement programs developed in the needs study require good highway administrative procedures to insure maximum benefits of these programs to the people who pay the bill. On the whole, secondary road business in Iowa appears to be well managed, as a result of forward looking legislation, in the past, and of the efforts of generally competent personnel. There are, however, substantial differences among the counties in the role played by boards of supervisors in the conduct of county road affairs. This is due, in part, to lack of clarity in highway laws pertaining to responsibilities of county boards in such matters. (Pages 74, 75, and 76, ASF Report)

A. Definition of Responsibility of County Board of Supervisors and

County Engineers

Noting the situation with respect to the responsibilities of boards of supervisors in the administration of secondary roads, the Automotive Safety Foundation recommended: That the General Assembly enact legislation clarifying the intent of the legislature with regard to the policy-making role of boards of supervisors in county road affairs and with regard to the direct executive authority of the county engineers. (Page 75, ASF Report)

The Road Study Committee concurs in the substance of the recommendation of the Automotive Safety Foundation regarding the responsibilities of boards of supervisors and the duties of the county engineer and, therefore, recommends:

- 1. That the General Assembly enact legislation rewriting the pertinent laws to define and establish the board of supervisors as a policymaking body; to prevent the board of supervisors from personally assuming duties as a superintendent or a foreman or other participant in actual construction or maintenance operations on secondary roads; and to designate the county engineer as the executive officer, responsible for the actual execution of all construction and maintenance of secondary roads within the county and for the approval of all bills for secondary road work to the extent that no expenditures may be made from secondary road funds without the signed approval of the county engineer and,
- 2. That the General Assembly enact legislation providing that all memebers of all County Boards of Supervisors be paid an annual salary instead of per diem fees.

B. Advertisement and Letting for Construction

Attention of the Road Study Committee has been directed to the need for clarification of Sections 309.40, 309.41, and 309.42, Code, 1958. Following a review of these sections, the Committee recommends:

1. That the General Assembly enact legislation repealing Sections 309.40, 309.41, and 309.42, Code, 1958, and replacing them with a single new section as follows: "All construction projects, including all culverts, bridges, grading, and surfacing materials, of which the engineers's estimate of total cost exceeds \$5,000 in the aggregate, shall be

advertised and let at a public letting. All construction projects, including all culverts, bridges, grading, and surfacing materials, of which the engineer's estimate of total cost in less than \$5,000 in the aggregate, may be advertised and let at a public letting, or may be negotiated privately, or may be built by day labor, but in no case shall projects be broken into small units to qualify for day labor work, and final cost of all negotiated or day labor work must not exceed the engineers estimate of the cost of the work. All contracts which exceed \$5,000 shall be first approved by the State Highway Commission before they shall be effective as a contract.

C. <u>Advertisement and Letting for Maintenance Equipment and Materials</u> At present, purchases of equipment and materials used for maintenance work on secondary roads, are without safeguards on the expenditures of funds for these purposes. These expenditures are necessarily large and certainly should be handled as carefully and wisely as those for construction work. Minimum specifications should be required and bids taken on all single items of equipment on which the estimated cost will exceed \$3,000, or exceed \$5,000 on multiple items of the same type. Original cost and trade in allowance should be required on the bids in computing the net cost to the county. Boards of Supervisors should not be required to accept the lowest bid, but to exercise good judgement in their selection. In case the low bid is not accepted, reasons for the action of the board should be stated in the motion authorizing the purchase of the equipment.

The Road Study Committee considers it essential that all public funds expended for highways be handled carefully and wisely and that the obligations to do so be consistent among the several agencies handling such funds. Therefore, the Committee recommends:

 That the General Assembly enact legislation requiring the use of definite specifications for the purchase of materials for maintenance work on secondary roads; requiring advertisement and a public letting

for indi	vidual	items of	material:	s costin	g \$3,0	00 or no	re;	and	requiring
purchase	at the	low bid	provided	the mat	erials	offered	at	that	bid
meet the	defini	te speci	fications	for the	mater	ial to b	e pu	ircha	sed.

D. Tile Across Highway

Section 465.23, Code, 1958, requires that the expense for materials and labor used in installing tile drains across highways and all subsequent repairs thereof shall be paid from funds available for the highways affected.

This section has required large expenditures from the secondary road fund for private drainage, which cannot be classed as construction or maintenance. The amendment of 1942 to Article VII of the Constitution of the State of Iowa restricts the use of the road use tax fund exclusively to the construction, maintenance, and supervision of highways. The part of Section 465.23 pertaining to the payment for a tile across the highway is questionable with respect to its legality.

The Road Study Committee recommends:

l.	That the General Assembly enact legislation revising Section 465.23,
	Code, 1958, to eliminate payment from road funds for private tile lines
_	across a highway which have not been affected by the construction or
	grading of the highways involved.

E. Rural Subdivisions and Their Roads

During recent years and at the present time, developers and builders have been and are establishing rural subdivisions outside of incorporated places at a high rate. The streets in these subdivisions are frequently improperly laid out and constructed as to width, grade, drainage, or type of roadway surfacing. Under existing laws, such streets become a part of the secondary road system and an obligation of the county for construction and maintenance.

The Road Study Committee recommends:

1. That the General Assembly enact legislation providing for the regulation and control of the establishment of rural subdivision outside of incor-

porated places and providing for a certificate of approval by the Board of Supervisors and by the County Engineer of the design, layout, widths, drainage, provisions, and construction specifications for the roads and streets in such subdivision as a prerequisite for eligibility of these roads, and street to become a part of the secondary road system.

- 2. That the General Assembly enact legislation authorizing the Board of Supervisors to prepare and adopt resolutions of necessity and to levy assessments for the improvement of roads and streets in existing rural subdivisions outside of incorporated places.
- 3. That the General Assembly enact legislation authorizing and enabling joint action by the Board of Supervisors and any city or town council in the regulation and control of the establishment of rural subdivisions adjacent to a city or town regardless of the size or population of the city or town.

Chapter III

City and Town Roads and Streets

I. Introduction

There are 942 incorporated cities and towns in Iowa, varying in population from 32 for the smallest to 208,982 for the largest. They include a total population of 1,901,301, approximately 69 per cent of the population of the state, following a century of growth at a nearly constant rate of about 18,510 per year, or 185,100 per decade.

The development of adequate street facilities for this growing population continues to be, as it has been for many years, one of the most urgent and complex problems confronting the municipalities of the state. It is now evident from a study of trends of the various segments of the population, that future increases in the population of the state will be due to increases in the population of the cities and towns, and particularly to increases in the larger cities.

The economic health of the central business districts, especially those of the larger cities, depends largely on the ability of the people within those cities and within their surrounding trade territories to reach those districts, usually located near the center of the city, conveniently, comfortably, and safely. The expanding urban areas require new roads and streets for local use and extension and improvement of arterial streets between the new areas and the principal centers of traffic interest in and near the urban areas.

Future increase in population in Iowa is largely dependent upon the growth in manufacturing and processing industries in the state. Iowa produces and educates more people, particularly in the rural areas, than it can employ. This creates an ever present supply of functionally literate and emotionally sound and stable labor eagerly sought by industry. Industrial growth may be expected to continue at the current or even an accelerated rate during the next 20 years. Whatever the rate, location of new plants will most likely continue to be, as it has been in the case of the 3,600 manufacturing and processing plants now located

38

in Iowa, either in or near a city or a town.

Cities and towns, large and small, thus, have ever before them, the challenge of providing good access to central business districts, industrial plants, and mumerous other centers of traffic interest for the health and growth of local economies as well as the economy of the state as a whole of which each is an increasingly important part.

The residents of the cities and towns generate about 80 per cent of the travel on municipal streets but they also have an interest in highways in rural areas where they generate 64 per cent of the total travel by residents of Iowa on the rural roads of the state. Residents of cities and towns produce two thirds of the travel on the rural primary roads, one third of that on the Farm-to-Market road system, and one fourth of that on the local secondary road system. For consistency in quality of highway transportation service wherever they may need to travel to transact business, to go to work, to go to school, to shop, or to receive medical attention or other personal services, residents composing 69 per cent of the population in Iowa and living in cities and towns need street improvements as adequate for the various functions performed as are the rural highways which they also use and support.

There are 10,767 miles of city and town streets, other than extensions of primary roads. This is approximately 10 per cent of the total road and street mileage and it carries approximately 19 per cent of the total travel in the state. The extensions of the primary roads (1,081 miles of streets) are approximately one per cent of the total mileage of roads and streets and carry 13 per cent of the total travel in the state. Consequently 32 per cent of all travel in the state is on city and town streets.

II. Classification of Streets

Although requiring classification of highways for administrative purposes for half a century, Iowa law is completely silent with respect to classification of city and town streets into systems for such purposes. Recognizing a need for some sort of classification of streets, at least for certain purposes, and operating under laws which give them jurisdiction over streets within their corporate limits, city and town councils have adopted local ordinances and resolutions for the designation of arterial street systems primarily for the regulation of traffic. Other laws provide for the selection and designation of certain streets by the State Highway Commission as extensions of the primary roads. Other than these few provisions, Iowa law, either state or local appears to consider all streets of equal importance to the community.

For the purposes of the needs study, the Automotive Safety Foundation classified city and town streets other than primary road extensions on the basis of the predominant functions performed. In this operation, the Foundation defined Arterial Streets as being those which provide through connections between focal points of traffic interest either within a city or town or between these and other focal points of traffic interest in outlying areas adjacent to a city or town and defined Access Streets as being those which serve directly the homes of the 1.9 million living in incorporated areas, innumerable stores, offices, industrial plants, school, churches and community centers distributed through out the resiential and industrial areas of the cities and towns.

The Arterial Streets, although affording local service, carry predominantly intercity and intracity traffic. These streets are accordingly of city wide interest and accommodate the major traffic movements between focal points of traffic interest within and near the city or town. The Foundation determined need for 2,027 miles of streets, other than extensions of primary roads, in this category.

Access streets provide direct access to abutting property and are, therefore, primarily of interest to those owning or occupying property along the street either in residential or industrial areas of the city or town. The principal function of these streets is to provide access to the abutting properties in either area. Consequently, traffic on these streets is predominantly of local nature. The

access street system includes, all city and town streets, other than those classified as Arterial Streets or designated as Primary Road extensions, or a total of approximately 8,740 miles.

The Automotive Safety Foundation concluded that classification of city and town streets is needed to identify the most essential street needs, to provide a frame for more effective programs of street improvement and to form a foundation for better street management and therefore, recommended:

1. That the General Assembly enact legislation requiring cities over 5,000 population to establish Arterial Street Systems and Access Street Systems, in addition and complementary to extensions of state routes within municipalities, in accordance with criteria to be developed jointly by representatives of cities and towns and the State Highway Commission and providing that until designations of such systems shall be accomplished by the cities and towns, the Arterial Street Systems as determined in the needs study shall be constituted as the official systems. (Recommendation 8, Page 34, ASF Report)

The Road Study Committee fails to concur in the views of the Automotive Safety Foundation with respect to the need for classification of streets in cities and towns but recommends:

 That the General Assembly enact legislation permitting the classification of streets into Arterial Street Systems and Access Street Systems as proposed by the Automotive Safety Foundation in its recommendation No. 9 on page 34 of the report, "Iowa Highway Needs", by any city or town that may desire to so classify its streets.

III. City and Town Street Needs

A. General Needs

Approximately 32 per cent of the 2,027 miles of Arterial Streets as defined in the needs study were found to be intolerably inadequate for current traffic. Such streets can often be overloaded to stagnation by a relatively small increase

in number of vehicles during peak hours of traffic. Oportunities for relief through provision of new facilities are severly limited by restricted right of way or high costs of right of way on which to make improvement.

Approximately 50 per cent of the 8,740 miles of Access Streets were found to be in poor condition and in need of repaying or of paying for the first time. In addition, it was estimated by the Foundation that 800 miles of new streets will be required within the next 20 years. (Page 50, ASF Report)

B. Average Annual Costs of Improvement Programs

The needs of the city and town streets over the next 20 years are given in terms of average annual costs in Table No. 1. This tabulation shows average annual costs for each of three 20-year programs developed by the Automotive Safety Foundation, each having a different length of time for elimination or "catch-up" of the backlog of deferred or urgently needed work on the Arterial Street System.

C. Total Costs of Improvement Programs

The total costs of the three 20-year programs are approximately the same. Those for the program with the 20-year catch-up period are given in Table 2.

Average Annual Costs of Alternative Programs For Improvement of Municipal Streets Other Than Primary Road Extensions

System	stem 10-year 15-year		ear	20-year	
	Catch-u First 10-years	p Period Next 10-years	Catch-up First 15-years	Period Next 5-years	Catch-up Perio First 20-years
Artorial					
Construction	\$25.188.000	\$6.960.000	\$18.883.000	\$7.346.000	\$16.008.000
Maintenance	4,380,000	5.033.000	4,386,000	5.076.000	4,407,000
Administration	1,601,000	629,000	1,252,000	659,000	1,097,000
Total	\$31,169,000	\$12,622,000	\$24,521,000	\$13,081,000	\$21,512,000
Local Access St	reets				
Construction	\$23.239.000	\$23,239,000	\$23.239.000	\$23.239.000	\$23,239,000
Maintenance	8.356.000	8,356,000	8.356.000	8.356.000	8.356.000
Administration	948,000	948,000	948,000	948,000	948,000
Total	\$32,543,000	\$32,543,000	\$32,543,000	\$32,543,000	\$32,543,000
Both Systems					
Construction	\$48.427.000	\$30.199.000	\$42,122,000	\$30,585,000	\$39.247.000
Maintenance	12.736.000	13.389.000	12,742,000	13.432.000	12.763.000
Administration	2,549,000	1,577,000	2,200,000	1,607,000	2,045,000
Total	\$63,712.000	\$45,165,000	\$57,064,000	\$45,624,000	\$54,055,000
		(Page	50, ASF Report	·t)	
		Ta	ble No. 2		
		Total Costs	of Improvemen	nt Program	
Item	A	rterial Street	s Acces	s Streets	Total
Construction		\$320,160,000	\$46	4.780.000	\$784,940,000
Maintenance		88,140,000	16	7,120,000	255,260,000
Administration		21,940,000	ĩ	8,960,000	40,900,000

D. Capital Investment Cost for Construction

The capital investment costs for construction of the 20-year program with 20-year catch-up period are shown in Table No. 3.

Table No. 3

Capital Investment Cost for Construction

Item	Arterial Streets	Access Streets	Total
Right of Way Streets Structures	\$ 32,137,000 237,720,000 50,303,000	\$455,360,000 9,420,000	\$ 32,137,000 693,080,000 59,723,000
Total	\$320,160,000	\$464,780,000	\$784,9 40,000

(Page 51, ASF Report)

E. Backlog of Work Needed Now

The backlogs of deferred and urgently needed improvements, that is, work needed now on both systems, are shown in Table No. 4. It is of interest to note that the backlog of work indicated on the arterial streets constitutes 39 per cent of the total basic construction costs for these streets, and that the backlog of work on the access streets constitutes 54 per cent of the total basic construction costs for these streets.

Table No. 4

Backlog of Work Needed Now

System	Costs	Per cent of Total Basic Construction Costs
rterial Streets	\$126,303,000	39
Local Access Streets	\$249,692,000	54
Both Systems	\$375,995,000	48

F. Distribution of Needs Among Cities and Towns

The average annual program costs are divided among the cities and the various population groups as shown in Table No. 5. The last column shows the percentage of the total average annual costs of the programs for all cities and population groups for each of the larger cities and of the various population groups.

Average Annual Programs Costs

For 20-Year Catch-up Period

City or Population	Average Annual Costs for 20-year Catch-up Period			Percent of Total Aver- age Annual
Group	Arterial Streets	Access Streets	Total	Costs
Des Moines	\$ 6.101.000	\$ 3,458,000	\$ 9,559,000	17.68
Sioux City	1,146,000	1.739.000	2.885.000	5.34
Davenport	1,052,000	1.367.000	2.419.000	4.47
Cedar Rapids	1,662,000	1.631.000	3,293,000	6.09
Waterloo	1,268,000	1.471.000	2.739.000	5.08
Dubuque	554.000	670.000	1,224,000	2.26
Council Bluffs	482.000	871,000	1.353.000	2,50
20,000-40,000	2.059.000	3.258.000	5.317.000	9,84
10.000-20.000	1,310,000	1.932.000	3,242,000	6.00
5,000-10,000	2,415,000	3,421,000	5,836,000	10.80
2,500-5,000	947,000	3,109,000	4.056.000	7.50
1.000-2.500	675,000	4.322.000	4,997,000	9.24
Under 1,000	1,841,000	5,294,000	7,135,000	13.20
Total	\$21,512,000	\$32,543,000	\$54,055,000	100.00

(Page 79, ASF Report)

IV. City and Town Street Finance

A. Current Street Revenue

In 1959, the cities and towns of Iowa had a total of \$39,500,000 in revenues from various sources for expenditures on roads and streets in municipalities. This is approximately 16 per cent of the total funds available for road and street purposes in Iowa in that year. However \$10,000,000 of this is from new borrowings and not properly classified as income. The needs are so urgent that recourse must be had to this source of revenue as a means of satisfying them. The total \$39,500,000, is therefore an indication of the amount required for that purpose. Continued dependence on this source for 25 per cent of the needs for improvements is both unsound and impractical.

Municipal Street Revenues

		Percentage of
Source	Amount	Total
Road Use Tax Fund	\$ 7,700,000	19.5
Property Tax <u>1</u> /	18,000,000	45.6
New Borrowings 2/	10,000,000	25.3
Miscellaneous 3/	3,800,000	9.6
Total	\$39,500,000	100.0

- 1/ Includes special assessments.
- 2/ Not truly income, as it must later be repaid from future income.
- 3/ Approximately one half from parking meter funds and remainder from utility funds, liquor tax refunds and transfers from other funds.

(Page 24, PAS Report)

B. Estimated Street Revenues

Anticipated street revenues over the next 20 years on the basis of continuation of the current apportionment of road user revenues and current forms of taxation for municipal streets indicate an average annual income of approximately \$42,750,000. (Table B-8, PAS Report)

C. Comparison of Needs and Anticipated Revenues

Execution of the proposed city and town street 20-year improvement program is estimated to require an average annual expenditure of \$54,055,000. This is approximately \$11,305,000 more than is anticipated to become available through continuation of current apportionment of road user taxes and current forms of taxation for city and town street purposes. Over a 20-year period, this deficit would amount to \$226,100,000 which when added to the current indebtedness would bring the total deficit over the period to \$268,180,000. See Table No. 7.

46

-

_-

Anticipated Revenues

System	
Needs	Amount
Artorial Streets	\$430,240,000
Access Streets	650,860,000
Sub-Total	\$1,081,100,000
Debt Service	42,080,000
Total Needs	\$1,123,180,000
Revenues 1/	855,000,000
Deficiency	\$268,180,000
L/ From an Average Annual Revenue	\$42,750,000

(Page 43, PAS Report)

The Public Administration Service proposes to cover the deficiency by increasing the apportionment of road user revenues to cities and towns from the present approximately 7 per cent to 15 per cent and leaving the situation with respect to other sources of street revenues unchanged. (Pages 50, and 57, PAS Report)

The Road Study Committee recommendation with respect to this proposal is presented in Chapter V of this report which pertains to the Road Use Tax Fund.

D. Distribution Among Cities and Towns

The distribution of whatever allocation of the Road Use Tax Fund that may be made to cities and towns, as a whole, among the individual cities and towns is a complex problem.

The Public Administration Service proposed to distribute it first to the arterial and access street systems, second to allocate shares of both systems to population groups on a needs basis and finally to distribute the group shares within the groups on a population basis. In detail, this requires four steps as follows:

1. Allocate 11 per cent of the road use tax fund to the arterial street system.

- 2. Allocate 4 per cent of the road use tax fund to the access street system.
- 3. Allocate shares of both systems to population groups on the basis of needs, and
- 4. Distribute group shares for each system within groups on a population basis.

The relative protions of the 15 per cent allocation provided by this system of division among the cities and towns would be as shown in Table No. 8

Table No. 8

Distribution of 15 per cent Allocation

as Proposed by Public Administration Service

Population Group	Percentage of 15 per cent <u>Allocation</u>
Over 100,000	23.6
80,000-100,000	16.9
40,000-80,000	10.4
20,000-40,000	9.3
10,000-20,000	6.0
5,000-10,000	10.7
2,5000-5,000	6.3
Under 2,500	16.8

Total

100.0

(Pages 65, 66, 67, and 68, PAS Report)

With respect to the distribution of an allocation from road use tax funds to cities and towns among the cities and towns, the Road Study Committee recommends:

1. That the General Assembly enact legislation providing that whatever

allocation of the road use tax fund maybe made to cities and towns

it be distributed among cities and towns as follows:

a. Sixty per cent of the allocation to be distributed among the population groups on the basis of needs as determined by the Automotive Safety Foundation in the report, "Iowa Highway Needs" and the groups shares, thus, obtained, distributed within the groups on the basis of population, (See Table No. 5 above) and,

b. Forty per cent of the allocation to be distributed among the

cities and towns on the basis of population.

V. Management of City and Town Streets

A. General Management of Streets

In the opinion of the Automotive Safety Foundation, the large number of municipalities creates such diverse management problems that adequate improvement will remain difficult as long as complete local autonomy is maintained. In total, street needs in smaller places are substantial but those of many are so small that the city or town cannot afford to hire adequate engineering and fiscal supervision to administer to them. Larger places with greater needs are in better position in this respect and can employ the personnel required for these purposes. The difference between the smaller places and the larger in relation to the ability to employ required technical personnel is the basis for the differences in recommendations by the Automotive Safety Foundation with respect to management of the proposed improvement programs.

B. Relationships between State

Highway Commission and Cities and Towns

The Automotive Safety Foundation suggested closer relationships between the state and the municipalities in highway affairs, particularly in connection with state allocated funds for street purposes and, with this objective in view, recommended:

1. That the General Assembly enact legislation expanding the activities of the State Highway Commission by providing for cooperative relations with all municipalities on street affairs, similar to those now established or proposed for the counties but excluding direct control of funds, and letting of contracts except on primary road extensions. (Page 73, ASF Report)

The Road Study Committee concurs in the substance of the recommendation of the Automotive Safety Foundation with respect to relationships between the
State Highway Commission and municipalities and recommends:

 That the General Assembly enact legislation embodying the substance of the recommendation of the Automotive Safety Foundation with respect to cooperative relationships between the State Highway Commission and the municipalities on street affairs as expressed on page 73 of the report, "Iowa Highway Needs".

C. Street Planning

Allotnents from the road use tax fund to cities and towns for streets are wholly without restriction as to purpose or place of expenditure except that they be spent on streets. This is an oversight and a neglect of the responsibility of the state for the proper expenditure of these funds in the best interest of all of the people of the state from whom they were derived.

The Automotive Safety Foundation considering this situation recommended: 1. That the General Assembly enact legislation requiring

- a. The establishment of an arterial street fund in all municipalities, to receive such state aid as may be deemed appropriate, plus all other funds appropriated by local governments for the purpose of improvement, maintenance and administration of arterial streets.
- b. The larger cities to prepare five-year and smaller cities to prepare one-year advance construction programs, with provisions for annual review and revision,
- c. The submission of annual budgets and project-by-project programs to the State Highway Commission for approval at least three months in advance of the beginning of the fiscal year,
- d. All municipalities to account annually for all arterial streets funds and for any other funds involving allotments of road use tax funds for streets, in a report to the State

Highway Commission on forms prescribed by the Commission for the purpose.

- e. All municipalities furnish to the State Highway Commission satisfactory evidence of adequate engineering services and
- f. each municipality to designate one responsible official who can represent the city when dealing with state or county officials on street matters.

(Page 73, ASF Report)

The Road Study Committee concurs in the substance of all of the recommendations of the Automotive Safety Foundation pertaining to the arterial street fund, excepting that referring to the establishment of an an arterial street fund, that referring to adequate engineering and that to a 1.5 per cent allocation for research for which the Committee has made provision elsewhere, and recommends:

- 1. That the General Assembly enact legislation
 - a. Requiring cities over 5,000 population to prepare five-year and cities and towns under 5,000 population to prepare one-year advance construction programs subject to annual review and revision as changes in circumstances may indicate;
 - b. Providing for the submission of annual budgets, plans, and programs
 to the State Highway Commission for examination and review by
 December 1 prior to the beginning of each fiscal year;
 - c. Requiring all municipalities to account annually for all street funds and for any other funds involving allotments of road use tax funds for streets, in a report to the State Highway Commission on forms prescribed by the Commission for that purpose; and.
 - d. Requiring each municipality to designate one responsible official who can represent the city or town when dealing with state or county officials on street matters.

D. Traffic Engineering for City and Town Streets

Iowa law requires adoption of a uniform system of traffic control devices, signs, and markings on any public road or street. In general, the rural highways conform with this requirement, at least, to the extent that installations are made. The situation on primary road extensions is, however, in need of considerable improvement. The number of non-conforming installations on these extensions in municipalities is greater by far than on the rural primary roads. The problem on these extensions can be corrected most rapidly by giving the State Highway Commission full responsibility for them as recommended elsewhere in this report.

To achieve conformity on other city streets and to provide the great majority of the cities and towns with sorely needed advice and assistance with respect to traffic engineering problems, the Automotive Safety Foundation recommended:

1. That the General Assembly enact legislation authorizing and directing the State Highway Commission to provide technical advice on traffic engineering and related problems to municipalities under 50,000 population, at their request and at cost. (Page 73, ASF Report)

The Road Study Committee concurs in this recommendation and, in turn, recommends:

 That the General Assembly enact legislation incorporating the substance of the recommendation of the Automotive Safety Foundation with respect to traffic engineering for municipalities as given here and on page 73 of the report, "Iowa Highway Needs".

E. Contracts between Cities and Towns or Counties

The Automotive Safety Foundation study reveals that only about ten per cent of the 891 municipalities under 5,000 population regularly employs engineers or consultants for street work. Most towns are too small for efficient construction or maintenance activity. Certainly some practical means should be found to improve street planning and administration in these communities.

The Automotive Safety Foundation proposes that the counties assume full responsibility for the extensions of all secondary roads inside municipalities of less than 5,000 people. This fails to provide anything on behalf of the remaining local streets. Considering the many problems involved in street management in the smaller cities and towns, the Automotive Safety Foundation recommended:

 That the General Assembly enact legislation authorizing municipalities of less than 5,000 people to contract with larger adjoining cities or with counties in which they are located to provide street construction or maintenance, or both, at cost to be paid by the smaller municipality. (Page 74, ASF Report)

The Road Study Committee concurs in the substance of the recommendation of the Automotive Safety Foundation with respect to contracts between municipalities and other municipalities or counties for street construction and maintenance and recommends more specifically:

1. That the General Assembly enact legislation authorizing municipalities of less than 5,000 population to contract, when, as, and if, it be mutually agreeable, with adjoining larger cities or with counties in which they are located to provide street construction or maintenance, or both, at cost to be paid by the municipalities for which the work <u>is done.</u>

F. Bonds for Acceleration of Street Programs

The backlog of deferred and urgently needed improvements on city and town streets is so great that some means of accelerating its elimination may be advisable if adequate revenue for servicing the indebtedness is provided.

To permit cities and towns to take advantage of bond financing for the elimination of this backlog in the event additional funds are provided from any basic source of revenue for city and town streets, the Road Study Committee proposes that the cities and towns be given the same opportunities to do so as it recommended for State Highway Commission and the counties for accelerating improvements on the primary and secondary roads respectively and, therefore recommends:

 That the General Assembly enact legislation providing for the issuance revenue bonds by the cities and towns, for the acceleration of street improvement programs, said bonds to be redeemed and serviced from anticipated allotments of road use tax funds for city and town streets.

G. Increase in Levy on Property in Cities and Towns

To provide additional revenue to counties for secondary roads, the Road Study Committee deems it advisable to increase the optional 5/8 mill road levy on property in cities and towns and, therefore recommends:

 That the General Assembly enact legislation increasing the optional five eighths mill road levy on property in cities and towns to one and one half mills.

Chapter IV

State Park and Institutional Roads

I. Introduction

In any attempt to classify the roads of a large area such as the state of Iowa on the basis of functions performed, of services rendered, of necessity for certain types of administrative attention, or of any other logical or reasonable assumption there always remains a small mileage of widely distributed segments of road that fail to fit properly in any of the classifications chosen because of the special nature either of the uses of these roads or of the purposes for which they are established. In Iowa, this remainder includes a total of 274 miles of roads and streets at state parks and at state institutions.

A. Definitions of State Park and Institutional Roads

Section 306.2, (2) Code, 1958 states that the term "institutional roads" shall include those highways, either inside or outside of cities and towns, <u>upon or adjacent to</u> land belonging to the state at any state institution.

Section 306.2, (6) Code, 1958 states that the term "state park roads" shall include all those highways and roads, either inside or outside of cities and towns, upon land belonging to the state at any state park.

B. Jurisdiction of State Park and Institutional Roads

Section 306.3, Code, 1958, provides, among other things, that jurisdiction and control over the highways of the state are vested in and imposed on (1)-----; (2)----; (3) the board or commission in control of any state park or institution as to roads at such state park or institution.

This section further provides for concurrent jurisdiction by the State Highway Commission and the State Conservation Commission and by the Boards of Supervisors and the Conservation Commission with respect to state park roads but omits any provision for concurrent jurisdiction by cities and towns and any Board or Commission with respect to either state park or institutional roads.

Chapter 207, Acts of the 58th General Assembly provides for the construction

and maintenance of <u>all</u> state park and institutional roads, as defined in Section 306.2, Code 1958, by the State Highway Commission.

From a review of these several statutory provisions it is obvious that they create conflict in jurisdiction over roads or streets which are <u>adjacent to</u> a state institution. In fact, such roads inside cities or towns appear to be under overlapping rather than concurrent jurisdictions of three agencies, the Board in Control of the institution, the city or town in which the institution is located and, for construction and maintenance, the State Highway Commission. Such roads outside cities or towns involve, similarly, at least two agencies, either the Board in Control thereof and the State Highway Commission or the Board in Control thereof and a Board of Supervisors.

The ambiguity of the above provisions raises a number of questions, for example

- Does a city have any jurisdiction over a street within its corporate limits and adjacent to a state institution under the control of a state borad or commission?
- 2. Does a city or town have authority to expend any of its funds for either the improvement or maintenance of a street within its corporate limits and adjacent to a state institution?
- 3. Does a county have authority to expend any of its funds for either the construction or maintenance of a road adjacent to a state institution?
- 4. Does the State Highway Commission have authority to expend any of its funds for either construction or maintenance for a road or street inside a city or town and adjacent to a state institution or on a road outside of a city or town and adjacent to such institution?

Elimination of the words, "<u>or adjacent to</u>", from Section 306.2 (2) Code, 1958thereby restoring jurisdiction of the roads or streets adjacent to a state institution to the local authority which has jurisdiction over that portion of the road or street which is not adjacent to a state institution but connects with

such road or street, would clarify the statute and render unnecessary attempts to find answers for the many questions raised by the presence of these words in the statute.

Noting the confusion in the current statutes pertaining to state park and institutional roads, the Automotive Safety Foundation recommended:

1. That the General Assembly enact legislation clarifying the responsibility for state park and institutional roads. (Recommendation 7, Pages 33 and 34, ASF Report)

The Road Study Committee, recommends:

1. That the General Assembly enact legislation deleting the words "or adjacent to" from Section 306.2 (2) Code, 1958 thereby restoring jurisdiction of roads or streets adjacent to a state institution to their respective local authorities.

II. State Park and Institutional Roads Finance

Chapter 207, Acts of the 58th General Assembly provides for the payment by the State Highway Commission from primary road funds of costs for construction, improvement, and maintenance of all state institutional roads as now defined in Section 306.2 (2) Code, 1958 and all roads in state parks as defined in Section 306.2 (6) Code, 1958.

State Park and Institutional Roads were omitted from the needs programs. It was estimated however that the average annual costs for these roads over the next 20 years would be about \$710,000 for the 274 miles of roads and streets involved. (Page 81, PAS Report)

The Road Study Committee considers the state park and institutional roads to be the financial responsibility of the people of the state as a whole rather than that of particular agency and therefore recommends:

1. That the General Assembly enact legislation providing for an appropriation from the road use tax fund for state park and institutional roads before there be any division thereof.

CHAPTER V

Road Use Tax Fund

Approximately one half of all revenue for highway purposes in Iowa is derived from taxation of some feature of motor vehicle ownership or operation. The major portion of the revenue from these sources passes through the road use tax fund.

I. Composition of Road Use Tax Fund

The Road Use Tax Fund, as defined in Section 312.1, Code, 1958, as amended and revised in Chapter 250, Acts of the 58th General Assembly, is composed of all the net proceeds of the registration of motor vehicles; all of the net proceeds of the motor vehicle fuel taxes or license fees; all revenue derived from the use tax on motor vehicles, trailers, and motor vehicle accessories and equipment; ten per cent of the net revenues from the sales tax; and any other funds which may be law credited to the road use tax fund. The motor vehicle fuel taxes or license fees referred to here are the four and five cent per gallon taxes or fees levied through provisions of Chapter 324, Code, 1958.

II. Basis of Eistribution of Road Use Tax Fund

Allocations from the road use tax fund as prescribed in Section 312.2 and 312.3 Code, 1958, as amended and revised by Chapters 60 and 61. Acts of the 58th General Assembly and in Section 312.5, Code, 1958 are of two kinds, one kind providing for the allotment of a specified percentage or amount for particular purposes prior to apportionment on any other basis and the other kind providing for the allocation of the remainder after the application of the provisions of the first.

The first kind includes an allotment of two per cent of the total road use tax fund to the cities and towns street funds prior to any other allocations and an allotment of \$10,000 per month to the highway grade crossing safety fund. The second kind includes allocation of the remainder of the road use tax funds to

í. { C 1 ſ ſ 1 ſ ſ

the primary road fund, to the farm-to-market road fund, to the secondary road fund and to the cities and towns street construction funds on a percentage basis fixed by law. This is the final step in the allocation to the primary road fund. The portion allocated to the secondary road fund and a part of the portion allocated to the farm-to-market road fund are distributed among the counties in the ratio that the area of each county bears to the total area of the whole state and the remainder of the portion allocated to the farm-to-market road fund is distributed among the counties on the basis of need. The two portions (one for each kind of distribution) allocated to cities and towns street funds are both distributed among the cities and towns in the ratio that the population of each city or town bears to the total population of all such cities and towns.

III. Apportionment of Road Use Tax Fund

Under the present method of distribution the allocations are as follows:

A. Fixed percentage of total road use tax fund

1. Two per cent to cities and towns street fund

B. Fixed amount of total road use tax fund less 2%

1. \$10,000 per month to the highway grade crossing safety fund.

- C. <u>Percentage allocations of remainder of road use tax fund after</u> <u>deductions of two per cent and of \$10,000 per month</u>
 - 1. Primary Road Fund42 per cent2. Secondary Road Fund35 " "3. Farm-to-Market Road Fund15 " "4. Cities and town street fund8 " "5. Total100 Per Cent
- D. Division among counties
 - 1. Secondary Road Fund allotment distributed on area basis.

2. Farm-to-Market Road Fund.

a. Sixty per cent of allotment distributed on area basis

b. Forty per cent of allotment distributed on needs basis.

60

E. Division among cities and towns

- 1. Two per cent of total road use tax fund.
 - a. Cities and towns street funds allotment distributed on population basis.
 - IV. Special Motor Vehicle Fuel Taxes

In addition to the allocation from the road use tax fund, the primary road fund receives the net proceeds of two special motor vehicle fuel taxes of one cent per gallon as provided in Chapter 44. Acts of the 57th General Assembly.

The proceeds of one of these are for use in widening and improving primary roads now provided with a narrow paved roadway. The proceeds of the other are for use in providing paved roadways on primary roads having a gravel or crushed stone roadway surfacing. These are temporary taxes which expire July 1, 1961 unless either continued or made permanent by Act of the General Assembly.

V. Recommendations

It is obvious from the study of highway needs and of highway finances, that any serious attempt toward realization of the highway improvement programs developed in the needs study will require, at the least, the amount of funds now available and through natural increases for highway purposes.

A. Two cent Temporary Motor Vehicle Fuel Taxes

As a first step toward provision of the necessary funds for the proposed highway programs, the Road Study Committee recommends:

> 1. That the General Assembly enact legislation making permanent the motor vehicle fuel taxes levied in Chapter 44, Acts of the 57th General Assembly, in total amount of two cents per gallon, beginning July 1, 1961; continuing the use of the revenue from this two cent motor vehicle fuel tax until January 1, 1962 in the same manner as now provided by law; and,

providing that after January 1, 1962 the revenue from this two cent motor vehicle fuel tax be placed in the road use tax fund.

B. Motor Vehicle License Fees

The Public Administration Service concluded that the Iowa automobile fee schedule was obviously in need of simplification. This conclusion was based on the observation that user responsibility in support of highways bears no relationship to age or value of the vehicle which he operates.

Consequently the Public Administration Service recommended:

- That the reduction in automobile license fees on the basis of age be eliminated,
- That a flat fee be applied to all automobiles regardless of age or value, and
- 3. That the level of taxation of automobiles be reduced to \$20 per year as indicated by the incremental study made by that agency.

(Pages 54 and 55 and Table D-15, PAS Report)

The Public Administration Service also proposed a fee sheedule for trucks and buses which was based on the results of an incremental analysis of road user responsibilities. This schedule would produce about the total revenue as is now being produced but the load would be distributed differently among the vehicle groups (Page D-4 and Table D-2, PAS Report).

The Road Study Committee is unable to concur in any proposals of the Public Administration Service pertaining to motor vehicle license fees but does recommend:

> 1. That the General Assembly consider the proposal of the State Highway Commission for revision of the truck fee schedule as set forth below and in Table 6 in the Appendix of this report and examine administrative procedures for the determination of the values and weights of automobiles which are used in the computation of the license fees for these vehicles in Iowa.

COMMERCIAL VEHICLE REGISTRATIONS

It has been more than a decade since the Iowa Registration Fee schedules have been revised. Since the last revisions of the fee shcedule, the concept of highway travel has increased for the individual motorist thereby creating new and greater demands for new and modern highways.

In the eleven years that have elapsed since the last revision of registration fees in 1950, a number of inequities have developed. This is especially true in fees charged various types of commercial vehicles.

If the registration fees are to be determined in part by the gross weight of the vehicle, then these fees should be nearly equal per ton of gross weight megardless of the type of vehicle or the type of operation.

A series of tables have been prepared based upon 1958 registrations, which point out some of the more serious inequities presently existing in the current schedule of commercial vehicle registrations. (See Appendix)

Table 1 shows the present fee sheedule for trucks and buses and for truck-tractors. This table also shows the number of vehicles of each type in each gross weight class and the revenue produced by these vehicles in 1958.

Table 2 points out one of the serious inequities that exists under the present schedule of fees for commercial vehicles. For example, a truck and trailer combination may presently be registered for a combined gross weight of 24 tons for a combined annual registration fee of \$210 by using a trailer registered for 16 tons and a truck registered for 8 tons. A single unit truck registered for the same gross weight (24 tons) must pay an annual registration fee of \$565 and a truck-tractor semitrailer combination registered for these same 24 tons must pay an annual fee of \$595. This inequity in fee schedule can be corrected by requiring the

61A

power unit of a combination, whether it be a truck or truck-tractor, to be registered for the total gross weight of the combination.

Table 3 shows the annual, the average and the average registration fees per ton of registered gross weight for single unit trucks and buses and for trucks with trailers. This table further points out the inequities that presently exist between registration fees for trucks and for trucks with trailers.

Table 4 shows a comparison of the fees charged for truck-tractors only and truck tractor semitrailer combinations.

Table 5 is a summary of the annual fees charged to register trucks, truck and trailer combinations and truck-tractor semitrailer combinations.

Table 6 is a suggested fee schedule which will eliminate the trucktrailer registration fee inequity and which will partially eliminate the inequity that presently exists in the fee schedule for vehicles in the lower gross weight groups. In this schedule it is proposed to eliminate the three ton registration classification and to register all vehicles in two ton increments. This fee schedule provides for registering all power units for the combined gross weight of the combination and charging a flat five dollar registration fee for all trailers and semitrailers regardless of gross weight. This proposed schedule of fees takes into account that the smaller vehicles of the commercial classification have steadily increased in empty weight during the last ten years until at present a typical vehicle is 1,000 pounds heavier than its counterpart was in 1950.

61B

C. Additional Sources of Revenue

The Fublic Administration Service suggested several sources of additional revenue for highway purposes. (Pages 44, 45, 46, 82, 83, 84, 85, and 86, PAS Report)

The Road Study Committee suggests

 That the General Assembly consider and explore other sources of revenue for highway purposes as suggested in the Public Administration Service report with the view of meeting the needs of all of the highway systems.

D. Prior Allocations of Road Use Tax Funds

There are certain expenditures now chargeable to specific allocations of the road use tax fund that bear little relation to the purposes for which the allocations are made, such as payment of engineering costs of the State Highway Commission which are attributable to county roads or municipal streets and payment of costs of construction and maintenance of state park and institutional roads from primary road funds.

To correct this situation, the Road Study Committee recommends:

- That the General Assembly enact legislation providing for the budgeting and appropriation of fixed sums from the road use tax fund for
 - a. Engineering costs of the State Highway Commission that are attributable to secondary roads,
 - b. Engineering costs of the State Highway Commission that are attributable to roads and streets in cities and towns other than extensions of primary roads.
 - c. <u>Costs of construction and maintenance of state park and in-</u> <u>stitutional</u> roads,
 - d. The highway grade crossing safety fund, and

e. Costs of highway research and planning, all before allocation of the road use tax fund for any other purpose.

E. Allocations of Road Use Tax Funds

On the basis of results of an earnings credit analysis for the determination of fiscal responsibility for the highways of Iowa, the Public Administration Service concluded:

> That 55 per cent of revenues from road user taxes should be allocated to the state for use on primary roads, both rural and urban; 30 per cent, to the counties for use on secondary roads; and 15 per cent, to the cities and towns for use on city and town streets other than extensions of primary roads.

This agency also concluded that these allocations provided for a distribution of user revenues such that each local unit of government could meet its needs (presumably the costs of the proposed highway improvement programs) if it operates with reasonable efficiency and makes a reasonable local tax effort.

Formula now used allocate 42 per cent of the road use tax fund as now constituted to primary roads, 50 per cent to secondary roads, and 8 per cent to cities and towns. A two per cent preallocation deduction from the road use tax funds provides the cities and towns with about 10 per cent of the total road use tax fund. Eirect receipt of the net revenue of a special two cent motor vehicle fuel tax provides the primary roads with about 50 per cent and the city and town streets with about 8 per cent of the total net revenue from road user taxes. This leaves the secondary roads about 42 per cent of that revenue.

With the allocation formula proposed by the Public Administration Service the primary road system would have a surplus of \$9 million over the costs required for the 20-year program of highway improvements that was developed in the needs study unless bonds were used in the acceleration of the elimination

of the backlog. This would cause a deficit of about \$69,000,000 due principally to payment of interest on the bonds.

with this formula, the counties would have a deficit of about \$20 million per year or a total of \$392 million over the 20-year period required for the execution of the proposed secondary road improvement program. The Public Administration Service suggested that ± 2.1 million per year or a total of \$42 million of this deficit be covered by increase in property taxes and use of special assessments and that the remainder, \$17.5 million per year or a total of \$350 million be met by appropriations from the state general fund over the 20-year period of the program.

With this formula, the cities and towns would have a deficit of \$3.5 million per year or a total of \$69 million over the 20-year period given for the execution of the proposed program of road and street improvements in these places. The Public Administration Service proposed that all of this deficit be met by increases in local taxes.

Under this formula, division of the allocation to the counties among the counties is on the basis of need, first, of each of the three systems, County Trunk, County Feeder and Local County Road System as a whole, and finally, the portions to each of these on the basis of the ratio of the needs of each county to the total needs of the entire individual system in the state. The suggested allocations to the systems were 16 per cent of the total road use tax fund to the County Trunk Road System; 9 per cent to the County Feeder Road System; and 5 per cent to the Local Secondary Road System.

With this formula, the distribution among cities and towns is somewhat more complex. For this purpose the Public Administration Service proposed;

 That the allocation be made on the basis of the needs, as found in the needs study first, the individual systems, and finally, among the individual cities and towns as follows:

a. Allocate 11 per cent of the total state user revenue to the

arterial street systems of the cities and towns of the state as a whole.

- b. Allocate 4 per cent of the total state user revenue to the access street system of the cities and towns of the state as a whole.
- c. Allocate the shares of both of these systems to population groups on the basis of needs, and finally,
- d. Distribute the population group shares for each system within the groups on a population basis.

(Pages 50, 57, 65, 73, 75, 83, and Tables B+5, P.A.S. Report)

The Road Study Committee concurs, in part, with the basic allocations of 55, 30, and 15 per cent, but considers the creation of special funds for each road system unduly complex for the purposes to be served, preferring to leave the distribution of funds among systems to boards of supervisors and town governments as a matter of discretion with these agencies and of negotiation between these agencies and the State Highway Commission in connection with the review or approval of the budgets for road and street improvements, and therefore, recommends:

1. That the General Assembly enact legislation providing for the allocation of fifty per cent of the road use tax fund to the primary road fund, thirty-five per cent to secondary road funds and fifteen per cent to city and town street funds, on and after January 1, 1962, and, continuing the same allocations now provided by law from July 1, to and including December 31, 1961. (See Tabulation of Distribution of 35 per cent of Road Use Tax Fund to counties and Tabulation of Distribution of 15 per cent of Road Use Tax Fund to counties for 1961 after deduction of prior allocations proposed on page 60 of this report. Estimated balance after these deductions is \$114,445,876.00)

Safety

I. Introduction

Safe and convenient highway transportation. will not necessarily be assured by the very best system of roads that Iowa could build and maintain. Safer and more convenient transportation can come only by concerted efforts of the people of Iowa to plan and establish long-range highway safety programs. While safety starts and is centered in the individual, state organizations, outside and within government, need to provide the impetus for safety programs. The long-range planning and public policy that were esstential in building good highways are necessary in dealing with our highway safety problems.

A. Driving a Right or a Privilege

A "right to drive" proponent can say that nationally the number of deaths per 100 million miles of traveling have been cut in half the last 20 years, from 12 to 6. Yet, the economic costs and loss as a result of accidents still run into millions of dollars. With Iowa recognizing driving as a "privilege", we are convinced that our records of traffic accidents can be improved through well planned, long-range, coordinated programs helped by legislative actions.

B. Interest in Highway Safety

Many Iowans are interested in safety. The different groups and individuals who presented their views to this subcommittee are evidence of this interest. (a listing of these persons is attached. See page 18, Report of Subcommittee on Highway Safety.) Also at hearings of the full committee held in Storm Lake, Atlantic, Ottumwa, and Waterloo, some of the liveliest discussions concerned highway safety.

The major need, is provision for a continuity of leadership to work with various individuals and groups interested in all safety programs. The governor and the legislature need to assume the responsibility of providing this leadership and funds necessary to implement action programs.

C. Work of the Subcommittee

Many ideas and suggestions for possible study were given to the subcommittee on Highway Safety. However, in view of other work for the full committee, it has had to concentrate its efforts on those highway safety problems which seemed to be of greatest urgency or of the most interest. Because of the vast amount of further study and planning that should be done, the subcommittee suggested that the Road Study Committee ask the 59th General Assembly to provide for a comprehensive, continuing study of highway safety problems and programs. The last parts of the report of the subcommittee on Highway Safety contains listings of some of the problems given to this subcommittee that should be given further study.

(See pages 19 to 31 of the Report of the subcommittee on Highway Safety)

D. Recommendations

The following are the recommendations of the subcommittee on Highway Safety to the Road Study Committee.

Concurring in these recommendations, the Road Study Committee recommends:

1. Traffic Coordinating Committee of State Officials

That the General Assembly enact legislation creating a traffic safety coordinating committee of state administrative officials. This committee should have the responsibility for planning and coordinating traffic safety programs carried out by the individual department and division heads.

2. Continuing Legislative Study Committee That the General Assembly enact legislation providing for continuing safety studies by a legislative study committee particularly of motor vehicle and traffic safety matters, from a legislative policy view point. This committee could be created as an independent study committee, or it could be a subcommittee of the Legislative Research Committee. Two members of this committee should serve on the coordinating committee in an advisory capacity.

3. State Citizens Safety Council

That the General Assembly enact legislation encouraging the establishment of a statewide citizens safety council. Both the coordinating committee and the legislative study committee suggested in "1" and "2" above should encourage the creation of such a citizens council to lend public support for official safety programs and to provide ideas for dealing with highway safety problems. Consideration should be given by the legislature to partial financial support by the state of the work of this citizens group.

4. Traffic Safety Coordinator

That the General Assembly enact legislation establishing the position of traffic safety coordinator to be filled by appointment by the governor or by the coordinating committee. This position should be filled by a qualified person in the traffic safety field. He would work with the state safety committees and the state departments in planning and carrying out safety programs, and would assist state, community and county safety councils. His duties should be similar to those for the director of traffic safety in the Indiana law.

- 5. Local Traffic Safety Programs That it should be the policy of the coordinating committee, the traffic safety coordinator, and the state citizens safety council to help counties and municipalities establish local safety councils to carry out safety programs.
- 6. <u>Analysis of the Iowa Motor Vehicle Laws</u> <u>That the General Assembly consider, in the near future, needed</u> <u>changes in the motor vehicle laws of the state. A comparison</u> of the motor laws of Iowa with the Uniform Motor Vehicle Code

discloses that some changes are necessary. In some respects, the Iowa Motor Vehicle Laws are better and more complete than the Uniform Motor Vehicle Code. This comparison will be on file in the Legislative Research Bureau for study and review by members of the legislature and by legislative committees.

7. Probationary Licenses for Young Persons That the General Assembly enact legislation providing that drivers licenses issued for persons 16 to 20 years of age be probationary; that such licenses would be suspended for a minimum of six months upon cinviction of any moving traffic violation as defined by law; and that such licenses could be suspended for a longer period of time at the discretion of the courts. Consideration should be given also to restriction against driving on these licenses between 12, midnight, and 6 a.m., except when accompanied by a parent or guardian, or when authorized by written permission from a superintendent of schools, a mayor, or of such other public official as the legislature may designate. for use of a motor vehicle to travel to and from or engage in work or for other essential purpose.

8. Legislation Concerning the Drinking Driver That the General Assembly enact legislation strengthening Iowa law with respect to the "drinking driver" and in so doing consider the alternative types of control set forth in the report of the Subcommittee on Highway Safety to the Road Study Committee and make its own decision as to which might best serve to correct the problem of "driving while ability is impaired by alcohol."

E. Report of Subcommittee on Highway Safety

The report of the Subcommittee on Highway Safety to the Road Study Committee has been published and distributed as a separate document. Reference should be made to that report for the detailed information forming the basis of the foregoing recommendations.

~

~

 \sim

CHAPTER VII

Miscellaneous Recommendations

I. Introduction

From time to time in the course of its discussion, the Road Study Committee considered a number of matters relating to agencies having jurisdiction over highways and to other agencies of government.

A. Budget Law Application to Other Agencies

One of these matters is the situation of the Motor Vehicle Fuel Tax Department of the Office of the Treasurer of the State and of the State Highway Commission with respect to the budget law. Neither agency is now subject to the provisions of that law.

The Road Study Committee recommends:

That the General Assembly enact legislation placing the Motor
 Vehicle Fuel Tax Department of the office of the Treasurer of
 State and the State Highway Commission under the budget law
 except for funds which are required to match federal-aid alloted
 to the state by the federal government for special purposes.

B. Continuation of Road Studies

The importance of highways to the health and growth of the economy of Iowa is so great as to make highways a subject of constant interest to the General Assemblies and to the people of Iowa.

The Road Study Committee recommends:

1. That the General Assembly enact legislation providing for the creation of a road study committee, similar to that authorized by House Joint Resolution 12, Acts of the 58th General Assembly, to further review, during the interim between the 59th and the 60th General Assemblies, the many problems with respect to highways

which will continue to confront the people of Iowa.

C. Budget, Program, and Inventory

Any and all units of government of the state participating in the expenditure of road use tax funds for highway purposes should be required to budget all road funds, local road property tax funds and other miscellaneous funds for construction and maintenance work; to program all construction work by individual projects; and to program the maintenance work into various classifications, all as now required of the counties for the secondary road system.

Further, an annual report should be required from each unit of government having jurisdiction over any road system participating in the expenditure of road use tax funds. These reports should show actual expenditures and compare them with the budget and programs established for the period involved in each case.

All secondary road budgets, programs, and reports must be on a calendar year basis due to dependency on property tax income and legislation affecting the secondary road system should become effective as of January 1, 1962.

It should be mandatory that the unit of government in charge of each road system revise and keep current annually the Automotive Safety Foundation engineering inventory sheets covering roads or routes for which the status is changed by completion of projects or for other reasons and that the State Highway Commission keep the revised inventories on file.

The Road Study Committee recommends:

1. That the General Assembly enact legislation requiring the preparation, submission, approval, and adoption of an annual budget, program for future construction and maintenance, annual report, and perpetual road inventory by each unit of government in the state that participates in the expenditure of road use tax funds for any road or street system under its jurisdiction.

2. That the General Assembly enact legislation requiring that the

road or street programs involving expenditures of road use tax funds, except as otherwise provided for the primary road systems, show project-by-project intentions for a three-year period in advance for county programs; a five-year period for those for cities over 5,000; and a one-year period for those for cities and towns under 5,000 population and be subject to annual review and revision as circumstances may require.

Chapter VIII

We cannot concur in the recommendation of the majority for the allocation of the Road Use Tax fund because of the following reasons:

1. Both the primary and secondary roads systems are established on standards which, if continued, will provide adequate and essential roads for the general travelling public, trade, commerce and agricultural enterprises in Iowa, as well as provide necessary means of transportation for the economic, social and school needs of our people;

2. The proposed division of this fund, by the majority, would, in our opinion, make it impossible to have primary and secondary roads adequate to provide the above needs in our state;

3. The providing of engineering and planning services for municipalities, together with other provisions in which they will benefit out of the Road Use Tax fund, will be of material benefit to them.

Therefore, it is our recommendation that the Road Use Tax fund be allocated as follows:

A. The existing allocation continue until January 1, 1962;

B. From January 1, 1962 to and including December 31, 1962 that 50% thereof be allocated to the primary system; 40% to the secondary system and 10% to the cities and towns;

C. From January 1, 1963 to and including December 31, 1963 that 49% thereof be allocated to the primary system, 39% to the secondary system and 12% to cities and towns;

D. From January 1, 1964 and thereafter 48% thereof be allocated to the primary system, 38% to the secondary system and 14% to cities and towns.

ames iles P. Sutera

ccolar, C. Nolan

Chapter VIII. Minority Reports

Minority Report No. 2

The Automotive Safety Foundation report "Iowa Highway Needs" shows that the average annual costs for highway improvements over the next 20 years total \$278,006,000. The Public Administration Service report "Financing Iowa's Highways" indicate that the average annual revenue for highways over the same period will be about \$258,150,000 or \$19,856,000 less than the amount required to meet the needs for highway improvements.

Further analysis of these data reveals that funds anticipated to be available for each of the road or street systems is less than required to meet the needs of the system, \$5,704,000 less for the primary road system, \$2,896,000 less for the secondary road system, and \$11,256,000 less for the city and town street systems, or \$13,360,000 for the latter if service of current debt be included in the needs. Consequently, with deficits in view for each of the systems and for the systems as a whole, any change in the present method of division of the anticipated revenues for highways can result only in a change in the relationships of the deficits for the systems, that is, a reduction of deficit for one means an increase in that for another.

There are only two general solutions for this problem (1) equalize the deficiencies among the systems, that is, where one is disproportionally large, reduce it by a change on the method of division of revenues at the expense of one or both of the other systems, (2) increase the total revenue available for highway purposes and either reduce and equalize the deficits or eliminate them entirely.

I opposed the action of the Highway Study Committee in adopting the formula for allocation of the road use tax fund which provides 50 per cent for primary roads, 35 per cent for secondary roads, and 15 per cent for city and town streets because it reduces the deficit for city and town streets at the expense of an increase in the deficit for secondary roads, in fact, leaves these roads with

about twice the deficit for primary roads and nearly five times the deficit for city and town streets. This practically reverses the situation between secondary roads and city and town streets under present method of division of highway revenues. I am in favor of a more equitable solution, therefore, I recommend

1. That the General Assembly enact legislation providing for the allocation of 50 per cent of the road use tax fund to the primary road fund, 38 per cent to the secondary road funds, and 12 per cent to city and town street funds on and after January 1, 1962 and continuing the method of allocation now in effect from July 1, 1961 to and including December 31, 1961.

Adoption of this proposal would leave the deficit for primary roads at \$5,704,000, increase that for secondary roads to about \$8,000,000, and reduce that for city and town streets to about \$6,000,000 or to about \$8,000,000 if service to present indebtedness be taken into account.

A better solution would be to increase the revenue for highway purposes. To that end I recommend wholly on my own motion:

1. That the General Assembly enact legislation increasing the motor vehicle fuel tax to seven cents per gallon and dividing the revenue as follows; 50 per cent to the primary road fund, 38 per cent to the secondary road funds, and 12 per cent to the city and town street funds.

At current rate of consumption of motor vehicle fuel the additional one cent per gallon tax would produce about \$9,500,000 per year and, if the anticipated increases in consumption are realized, would produce an average of about \$13,000,000 per year in additional funds during the next 20 years. This would reduce the anticipated deficit for the 20-year Iowa highway improvement program and for the individual systems incidentally by about 65 per cent.

Respectfully submitted

Harold J. Teachout Member of Highway Study Committee

PROPOSED DISTRIBUTION

OF

35% OF ROAD USE TAX FUNDS TO COUNTIES

ON A

COUNTY SQUARE MILES ROAD USE TAX APPORTIONMENT ALLOCATION FOR FOR ALLOCATION ALL SECONDARY ADAIR 573 432,747.33 107,320 244,765 ADAMS 427 443.271.39 106.463 251,426 ADAMS 427 443.271.39 106.463 251,426 ADAMS 427 443.271.39 106.463 256.529 APPANOSE 513 451,453.54 101,114 258.586 AUDUBON 443 385,159.53 112.781 218.918 RENTON 712 541,846.35 150,846 343,431 RLACK HAWK 566 588.663.76 106.671 230.571 BOONE 578 433,535.33 106.671 230.571 BOONE 577 433,535.33 106.671 230.571 BUCHANAN 567 548.962.76 134.252 226.6014 BUENA VISTA 580 439.829.91 117.821 290.421 RUTLER 571 432.431.33 118.020 289.658	TED 1961	DISTRIBUTION OF ESTIMATED 1961 ROAD USE TAX FUNDS			AREA	
ADA I R573432,747.33107,320244,765ADAMS427443,271.39106,463251,426ALLAMAKFE671982,062.38140,668326,529APPANOOSE513451,453.54101,114258,586AUOUBON443385,159.53112,781218,918RENTON712541,846.35150,846343,431RLACKHAWK566588,663.76106,507285,257BOONE578433,535.33106,671230,571BREMER434352,240.9692,639220,890BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421RUTLER577432,376.33123,160300,717CALHOUN571432,431.33118,020289,658CARROLL572432,091.33117,459277,132CASS564526,703.76133,242309,658CEDAR573432,747.33100,324253,989CHICKA SAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON790534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356 </th <th>TOTAL ALLOCATION</th> <th>ALLOCATION FOR ALL SECONDARY</th> <th>ALLOCATION FOR F~M ONLY</th> <th>ROAD USE TAX</th> <th>SQUARE MILES</th> <th>COUNTY</th>	TOTAL ALLOCATION	ALLOCATION FOR ALL SECONDARY	ALLOCATION FOR F~M ONLY	ROAD USE TAX	SQUARE MILES	COUNTY
ADAMS427443,271.39106,463251,426ALLAMAKFE671982,062.38140,668326,529APPANOOSE513451,453.54101,114258,586AUDUBON443385,159,53112,781218,918RENTON712541,846.35150,846343,431RLACK HAWK566588,663.76106,507285,257BOONE578433,535.33106,671230,571BREMER434452,240.9692,639220,890BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421RUTLER577432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433.061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYCON790643,053.18169,138360,328CLINTON790544,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356 <td>352+085</td> <td>244,765</td> <td>107,320</td> <td>432,747.33</td> <td>573</td> <td>ADAIR</td>	352+085	244,765	107,320	432,747.33	573	ADAIR
ALLAMAKFE671982,062.38140,668326,529APPANOOSE513451,453.54101,114258,586AUDUBON443385,159,53112,781218,918BENTON712541,846.35150,846343,431RLACK HAWK566588,663.76106,507285,257BOONE578433,535.33106,671230,571BREMER434352,240.9692,639220,890BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421BUTLER577432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	357,889	251,426	106,463	443.271.39	427	ADAMS
APPANOOSE513451,453.54101,114258.586AUDUBON443385.159.53112.781218.918RENTON712541.846.35150.846343.431BLACK HAWK566588.663.76106.507285.257BOONE578433.535.33106.671230.571BREMER434352.240.9692.639220.890BUCHANAN567548.962.76134.252256.014BUENA VISTA580439.829.91117.821290.421BUTLER577432.376.33123.160300.717CALHOUN571432.431.33118.020289.658CARROLL572432.591.33117.459277.132CASS564526.703.76133.242309.658CEDAR578499.077.33134.010299.737CERRO GORDO575433.061.33134.828283.353CHFROKFE573432.747.33100.324253.989CHICKASAW497423.826.40100.177259.860CLAY573432.748.33108.719260.971CLAYCON790643.053.18169.138360.328CLINTON709534.582.16147.361352.746CRAWFORD715782.343.35206.207404.821DALLAS592247.697.4698.720225.356	467+197	326,529	140,668	982,062.38	671	ALLAMAKEE
AUDUBON443385,159,53112,781218,918RENTON712541,846,35150,846343,431BLACK HAWK566588,663.76106,507285,257BOONE578433,535.33106,671230,571BREMER434352,240.9692,639220,890BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421BUTLER577433,376.33123,160300,717CALHOUN571432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	359,700	258,586	101,114	451,453.54	513	APPANOOSE
RENTON BLACK HAWK712 566541,846.35 588,663.76150,846 106,507343,431 285,257BOONE BOONE578 433,535.33106,671 230,571230,571 230,571BREMER BUCHANAN434 567352,240.96 548,962.7692,639 124,252220,890 256,014BUENA VISTA BULER CALHOUN CALHOUN CALHOUN CALSS580 571 432,431.33117,821 123,160 300,717 230,571 432,431.33117,821 290,421BUENA VISTA BUENA VISTA ST1 CALHOUN CALHOUN CALHOUN CALROUN CARROLL CASS580 572 432,591.33 	331+699	218,918	112,781	385,159,53	443	AUDUBON
BLACK HAWK 566 588,663.76 106,507 285,257 BOONE 578 433,535.33 106,671 230,571 BREMER 434 352,240.96 92,639 220,890 BUCHANAN 567 548,962.76 134,252 256,014 BUENA VISTA 580 439,829.91 117,821 290,421 BUTLER 577 433,376.33 123,160 300,717 CALHOUN 571 432,431.33 118,020 289,658 CARROLL 572 432,591.33 117,459 277,132 CASS 564 526,703.76 133,242 309,658 CEDAR 578 499,077.33 134,010 299,737 CERO GORDO 575 433,061.33 134,828 283,353 CHICKASAW 497 423,826.40 100,177 259,860 CLAY 573 432,748.33 108,719 260,971 CLAY 573 432,748.33 108,719 260,971 CLAY 573 432,748.33 108,719 260,971 CLAYTON 709	494,277	343,431	150,846	541,846.35	712	RENTON
BOONE578433,535.33106,671230,571BREMER434352,240.9692,639220,890BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421BUTLER577433,376.33123,160300,717CALHOUN571432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134.828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	391,764	285,257	106,507	588,663.76	566	BLACK HAWK
BREMER BUCHANAN434 567352,240.96 548,962.7692,639 134,252220,890 256,014BUENA VISTA RUTLER CALHOUN580 577 433,376,33117,821 123,160 300,717 432,431,33290,421 300,717 289,658CARROLL CASS572 432,591,33117,459 117,459 277,132 277,132289,658 277,132 309,658CEDAR CERRO GORDO CLARKE578 573 432,747,33499,077,33 134,010 134,828 283,353134,010 299,737 259,860 253,989CHICKASAW CLARKE497 423,826,40100,177 259,860 220,421CLAY CRAWFORD DALLAS573 782,343,355108,719 260,971 260,207 404,821	337,242	230,571	106,671	433,535.33	578	BOONE
BUCHANAN567548,962.76134,252256,014BUENA VISTA580439,829.91117,821290,421BUTLER577433,376.33123,160300,717CALHOUN571432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	313,529	220,890	92+639	352,240.96	434	BREMER
BUENA VISTA580439,829.91117,821290.421BUTLER577433,376.33123,160300,717CALHOUN571432,431.33118,020289,658CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERO GORDO575433,061.33134.828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	390,266	256,014	134,252	548,962.76	567	BUCHANAN
BUTLER CALHOUN577433,376.33123,160300,717CALHOUN CARROLL571432,431.33118,020289,658CARROLL CASS572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR CERRO GORDO575433,061.33134,010299,737CERRO GORDO CHFROKFE573432,747.33100,324253,989CHICKASAW CLARKE497423,826.40100,177259,860CLAY CLAYTON573432,748.33108,719260,971CLAY CRAWFORD DALLAS574573,432,748.33108,719260,971CASS573432,748.33108,719260,971CLAY CRAWFORD573432,748.33108,719260,971CLAY CRAWFORD574572543,053.18169,138DALLAS592447,697.4898,720225,356	408+242	290,421	117,821	439,829.91	580	BUENA VISTA
CALHOUN571432.431.33118.020289.658CARROLL572432.591.33117.459277.132CASS564526.703.76133.242309.658CEDAR578499.077.33134.010299.737CERRO GORDO575433.061.33134.828283.353CHFROKFE573432.747.33100.324253.989CHICKASAW497423.826.40100.177259.860CLARKE428339.141.3992.234226.715CLAY573432.748.33108.719260.971CLAYTON790643.053.18169.138360.328CLINTON709534.582.16147.361352.746CRAWFORD715782.343.35206.207404.821DALLAS592447.697.4898.720225.356	423+877	300,717	123,160	433,376.33	577	BUTLER
CARROLL572432,591.33117,459277,132CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	407,678	289,658	118,020	432+431+33	571	CALHOUN
CASS564526,703.76133,242309,658CEDAR578499,077.33134,010299,737CERRO GORDO575433,061.33134,828283,353CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697,4898,720225,356	394,591	277,132	117,459	432,591.33	572	CARROLL
CEDAR CERRO GORDO578499.077.33134.010299.737CERRO GORDO575433.061.33134.828283.353CHFROKFE573432.747.33100.324253.989CHICKASAW497423.826.40100.177259.860CLARKE428339.141.3992.234226.715CLAY573432.748.33108.719260.971CLAYTON790643.053.18169.138360.328CLINTON709534.582.16147.361352.746CRAWFORD715782.343.35206.207404.821DALLAS592447.697.4898.720225.356	442+900	309,658	133,242	526,703.76	564	CASS
CERRO GORDO 575 433.061.33 134.828 283.353 CHFROKFE 573 432.747.33 100.324 253.989 CHICKASAW 497 423.826.40 100.177 259.860 CLARKE 428 339.141.39 92.234 226.715 CLAY 573 432.748.33 108.719 260.971 CLAY 573 432.748.33 108.719 260.971 CLAYTON 790 643.053.18 169.138 360.328 CLINTON 709 534.582.16 147.361 352.746 CRAWFORD 715 782.343.35 206.207 404.821 DALLAS 592 447.697.48 98.720 225.356	433,747	299,737	134,010	499,077.33	578	CEDAR
CHFROKFE573432,747.33100,324253,989CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	418+181	283,353	134 + 828	433,061,33	575	CERRO GORDO
CHICKASAW497423,826.40100,177259,860CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	354,313	253,989	100,324	432,747.33	573	CHEROKEE
CLARKE428339,141.3992,234226,715CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	360,037	259,860	100,177	423,826,40	497	CHICKASAW
CLAY573432,748.33108,719260,971CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	318,949	226,715	92+234	339,141.39	428	CLARKE
CLAYTON790643,053.18169,138360,328CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	369,690	260,971	108,719	432,748.33	573	CLAY
CLINTON709534,582.16147,361352,746CRAWFORD715782,343.35206,207404,821DALLAS592447,697.4898,720225,356	529,466	360,328	169,138	643,053.18	790	CLAYTON
CRAWFORD 715 782,343.35 206,207 404,821 DALLAS 592 447,697.48 98,720 225,356	500,107	352,746	147,361	534,582.16	709	CLINTON
DALLAS 592 447,697.48 98,720 225,356	611,028	404,821	206,207	782,343.35	715	CRAWFORD
	324,076	225,356	98,720	447,697.48	592	DALLAS
DAVIS 502 388,031.97 119,332 283,141	402+473	283,141	119,332	388,031,97	502	DAVIS
DECATUR 533 550,705,04 104,331 261,522	365+853	261,522	104,331	550,705,04	533	DECATUR
DELAWARE 571 432,432.33 107,903 300,890	408,793	300+890	107,903	432,432.33	571	DELAWARE

PROPOSED DISTRIBUTION

OF

35% OF ROAD USE TAX FUNDS TO COUNTIES

ON A

1	AREA		DISTRIBUTION OF ESTIMATED 196		
	IN	1960	ROAD USE TAX FUNDS		
COUNTY	SQUARE	ROAD USE TAX	ALLOCATION	ALLOCATION	TOTAL
	MILES	APPORTIONMENT	FOR	FOR	ALLOCATION
			F-M ONLY	ALL SECONDARY	
DES MOINES	429	360,014.39	95,225	221,334	316+559
DICKINSON	411	311,560.82	88,197	224,785	312,982
DUBUQUE	616	489,810.62	104,108	223,029	327,137
EMMET	417	312,506.82	79:669	200,926	280+595
FAYETTE	724	549,574.90	153,056	333,948	487+004
FLOYD	495	379,999.40	92,903	206,610	299+513
FRANKLIN	578	439,299.33	124,968	279,136	404,104
FREMONT	522	428,287,47	107,373	231,493	338,866
GREENE	576	433,218.33	113,819	244,249	358,068
GRUNDY	501	379,549,97	117,416	252,677	370,093
GUTHRIE	597	448,485.48	115,723	301,381	417,104
HAMILTON	570	432,274.33	99,206	235,530	334,736
HANCOCK	573	432,747.33	108,182	293,827	402,009
HARDIN	569	426,137.76	119,139	252+085	371,224
HARRISON	712	586,078.35	153,322	347,641	500,963
HENRY	427	427,564.39	86,981	213,184	300,165
HOWARD	468	426,748.68	89,412	195,708	285,120
HUMBOLDT	434	327+143+96	77,032	169,858	246,890
IDA	430	326,512.96	94,126	215+364	309,490
IOWA	583	536,974,91	142,725	319,193	461,918
JACKSON	649	733,498.31	134,481	340,479	474,960
JASPER	730	607,512.46	163,255	398,118	561,373
JEFFERSON	431	446,519,96	87,109	244,954	332,063
JOHNSON	611	480,007.62	136,183	295,615	431,798
JONES	569	426,137.76	128,720	324,077	452+797
KEOKUK	578	625,037.33	133,363	318,882	452,245
KOSSUTH	974	760+383+72	201,228	567,519	768,747

PROPOSED DISTRIBUTION

OF

35% OF ROAD USE TAX FUNDS TO COUNTIES

ON A

}	AREA	(DISTRIBUTION OF ESTIMATED 1961 ROAD USE TAX FUNDS		
	IN	(960			
COUNTY	SQUARE	ROAD USE TAX	ALLOCATION	ALLOCATION	TOTAL
	MILES	APPORTIONMENT	FOR F-M ONLY	FOR ALL SECONDARY	ALLOCATION
LEE	545	460,341.62	111,492	257,340	368,832
LINN	717	654,854.35	181,517	416,041	597+558
LOUISA	426	360,863.39	70+643	155,019	225+662
LUCAS	432	366,826.96	104,415	264,930	369+345
LYON	582	440,145.91	108,843	329,834	438+677
MADISON	563	425,191.76	119,704	253,374	373,078
MAHASKA	575	591,912.33	136,120	294+542	430+662
MARION	577	486,377.33	130,156	317,792	447,948
MARSHALL	572	432,589.33	108,635	313,816	422,451
MILLS	447	351,178.53	113,660	242+358	356,018
MITCHELL	463	354,125.68	89,414	195,840	285+254
MONONA	708	783,791.77	153,625	336,613	490,238
MONROE	433	381,050.96	89,540	214,788	304,328
MONTGOMERY	424	373+286-39	112,126	222,397	334,523
MUSCATINE	455	422+043+11	99,815	214,581	314,396
OBRIEN	569	426,137.76	113,544	266+818	380,362
OSCEOLA	395	297,082.67	80,156	183,908	264,064
PAGE	531	463,130.04	117,290	287,887	405,177
PALO ALTO	572	432,589.33	115,630	262,023	377,653
PLYMOUTH	861	654,866.28	210,833	418,239	629,072
POCAHONTAS	580	439,828.91	112,438	275,744	388,182
POLK	596	867,803,48	147,495	331.060	478,555
POTTAWATTAMIE	958	1093,347.44	245.064	490,143	735,207
POWESHIEK	580	540,709.91	92,958	252,879	345,837
RINGGOLD	540	409+612+62	110,956	277,177	388,133
SAC	576	433,219.33	129,533	302,528	432,061
SCOTT	470	405,882.25	110.139	243,975	354,114
SHELBY	589	825,502.91	154,860	376,524	531+384
1	1]			

PROPOSED DISTRIBUTION

OF

35% OF ROAD USE TAX FUNDS TO COUNTIES

ON A

COUNTY	AREA IN SQUARE MILES	1960 ROAD USE TAX APPORTIONMENT	DISTRIBUTION OF ESTIMATED 1961 ROAD USE TAX FUNDS		
			ALLOCATION FOR F-M ONLY	ALLOCATION FOR ALL SECONDARY	TOTAL ALLOCATION
STOUX	760	589,236.15	157,317	431,786	589,103
STORY	567	425,821.76	116,064	257,710	373,774
TAMA	720	545,588.92	128,390	333,625	462,015
TAYLOR	534	448,019.04	115,395	271,248	386,643
UNION	427	340,067.39	113,566	261,038	374,604
VAN BUREN	490	475,642.40	95,165	234,569	329,734
WAPELLO	438	414,890.96	107,941	216,759	324,700
WARREN	571	552,337,33	153,860	328,927	482,787
WASHINGTON	559	474,861.19	103,971	278,664	382,635
WAYNE	524	395,134,47	124,442	288,543	412,985
WEBSTER	723	572,911.90	138,225	319,075	457,300
WINNEBAGO	399	297,711.67	88,031	215,285	303,316
WINNESHIEK	686	609,466.63	155,189	406,108	561,297
WOODBURY	878	666,877.83	193,774	442,155	635,929
WORTH	399	320,753.67	74,794	173,251	248,045
WRIGHT	578	433,534.33	124,107	274,648	398,755
STATE TOTAL	56,147	48035+058+96	12,000,000	28,060,565	40,060,565

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

,

132	NAME	1960	1960	DISTRIBUT	ATED IDE	
POP.C	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IGO % OH ASE NEED	40% ON POR
	DES MOINES	208,982	997,963.53	1,878,224	3,036,106	2,572,953
	POP GROUP TOTAL	208,982	997,963.53	1,878,224	3,036,106	2,572,953
2222	CEDAR RAPIDS	92+035	405+395+33	827,164	1,045,914	958+414
	DAVENPORT	88+981	418+028+91	799,715	768,317	780+877
	SIOUX CITY	89+159	470,974+33	801,316	916,326	870+322
	POP GROUP TOTAL	270+175	1,294,398+57	2,428,195	2,730,557	2+609+613
0000	COUNCIL BLUFFS	54,361	254,740,28	488,569	429,737	453,270
	DUBUQUE	56,606	278,527.05	508,746	388,763	436,756
	WATERLOO	71,755	365,593,72	644,898	869,955	779,932
	POP GROUP TOTAL	182,722	898,861.05	1,642,213	1,688,455	1,669,958
*********	AMES	27,003	128,399.09	242,689	207,870	221,798
	BURLINGTON	32,430	171,660.48	291,464	249,647	266,373
	CLINTON	33,589	170,348.36	301,881	258,570	275,895
	FORT DODGE	28,399	140,830.81	255,236	218,616	233,264
	IOWA CITY	33,443	152,589.59	300,568	257,446	274,694
	MASON CITY	30,642	156,896.09	275,395	235,883	251,688
	OTTUMWA	33,871	188,583.75	304,415	260,740	278,210
	POP GROUP TOTAL	219,377	1,109,308.17	1,971,648	1,688,772	1,801,922
	BOONE	12,468	68,208,81	112,056	88,455	97,895
	CEDAR FALLS	21,195	80,376,97	190,490	150,369	166,417
	CHARLES CITY	9,964	57,807,03	89,551	70,690	78,235
	FT MADISON	15,247	83,853,60	137,033	108,170	119,715
	KEOKUK	16,316	90,526,45	146,640	115,755	128,109
	MARSHALLTOWN	22,521	111,145,00	202,407	159,776	176,829
	MUSCATINE	20,997	106,771,21	188,711	148,964	164,862

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

₹	NAME	1960	1960	DISTRIBUTION OF ESTIMATED 1981 ROAD USE TAX FUNDS		
	CITY OR TOWN	POPULATION	APORTIONMENT	IOO % ON POPULATION	icot, on Ase need	40% ON NEED AND 40% ON POR
5	NEWTON	15,381	65.735.94	138,236	109,121	120,767
15	OSKALOOSA	11,053	62+377+09	99,339	78,416	86,78
2	POP GROUP TOTAL	145,142	726,802.10	1,304,463	1.029,716	1,139,61
6	ALGONA	5,702	30+364+23	51,247	50,189	50,612
6	ATLANTIC	6+890	36+336+16	61,923	60,646	61,15
l o	BETTENDORF	11,534	28+777-33	103,662	101,522	102,37
10		7,682	34,939,93	69,042	67,617	68,18
2		6,629	42,756,68	59,578	58,349	58,840
12		5,042	29+831+56	45,315	44,380	44,754
		() / 24	43+205+30	69,419	67,986	68,560
		4,903	28.519.38	44,066	43,156	43,520
		1,001	46,637.00	68,907	67,486	68,054
		0,437	33,981.01	57,835	56,640	57+11
12	FATRETELD	1,921	3/30/0.32	71,243	69,774	70,361
1 ₆	GRINNELL	7.267	40+728+00	12+380	70,891	/1+489
1Ă	INDIANOLA	7.062		00+210	64,845	65,39.
Ĭč	KNOXVILLE	7,817	201079+23 42.756 60	03+470	62,159	62+684
6	LE MARS	6.767	32.769.81	60,810	50 54 20 50 54 20 50 54 20 50 54 20 50 50 50 50 50 50 50 50 50 50 50 50 50	69,383
6	MARION	10.882	33,173,55	97.801	05 70/	
6	MT PLEASANT	7.339	32.764.23	65,960	5/1104	45.141
6	OELWEIN	8.282	44.063.20	74.434	72,800	73.513
6	PERRY	6,442	34.620.31	57.897	56.702	57.180
6	RED OAK	6,421	36,594,13	57,709	56,518	56.99/
6	SHENANDOAH	6,567	38.004.35	59.021	57.803	58,201
6	SPENCER	8,854	41,752.96	79.665	78.021	78.678
6	STORM LAKE	7,728	38,994.12	69.455	68,022	68,596
6	WASHINGTON	6,037	33,095.06	54,258	53,137	53.584
6	WAVERLY	6,357	28+722+48	57,133	55,955	56,426
6	WEBSIER CITY	8,520	42+678-19	76,574	74,003	75,625
6	W DES MOINES	11,949	33,773,54	107,391	105,175	106,062
6	POP GROUP TOTAL	210,590	1,015,763.96	1,892,675	1,853,615	1,869,240

.

•

÷
COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

.

Ş	NAME	1960 1960	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS			
10 HOE	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	100% ON ASE NEED	GOSON NEED AND AOSON POR
7	ALBIA	4,582	. 27,128.76	41,181	35,45	37,74
[7]	ANAMOSA	4,616	21,925.09	41,486	35,718	38,02
7	AUDUBON	2,928	15,745.68	26,319	22,65	24,12
[7]	BELLE PLAINE	2,923	17,136.30	26,271	22,610	24,07
7	BLOOMFIELD	2,771	15,072.76	24,904	21,44	22,82
[7]	CLARION	3,232	17,663.40	29,048	25,009	26,62
7	CLEAR LAKE	6,158	27,908.19	55,349	47,650	50,72
121	CRESCO	3,809	20,399.83	34,233	29,471	31,37
17	DENISON	4,930	25,536,25	44,308	38,14	40,61
17	DE WITT	3,224	14,826.04	28,976	24,94	26,56
[7]	EAGLE GROVE	4,381	23,416.63	39,374	33,900	36,08
17	ELDORA	3,225	17,422.24	28,989	24,954	26,56
7	EMMETSBURG	3,887	21,083.95	34,934	30,07	32,02
7	EVANSDALE	5,738	20,024,18	51,571	44,40	47,26
17	FOREST CITY	2,930	15,510,12	26,333	22,67	24,13
[7]	GLENWOOD	4,783	26,153.07	42,987	37,011	39,40
7	HAMPTON	4,501	24,852.13	40,453	34,828	37,07
7	HARLAN	4,350	21,953.11	39,096	33,660	35+83
17	HAWARDEN	2,544	14,719.48	22,864	19,689	20,95
17	HUMBOLDT	4,031	18,050.29	36,228	31,191	33,200
7	INDEPENDENCE	5,498	27,280.15	49,414	42,543	45,29
7	IOWA FALLS	5,565	27,476.40	50,015	43,062	45,84
7	JEFFERSON	4+570	24,257.73	41,673	35,362	37,646
7	MANCHESTER	4,402	22,356.83	39,563	34,062	36,263
7	MAQUOKETA	5,909	24,151.19	53,107	45,723	48,67
7	MO VALLEY	3,567	19,883.95	32,058	27,601	29,384
7	MONTICELLO	3 • 190	16,194,20	28,670	24,684	26,278
7	NEVADA	4,227	21,100.74	37,990	32,708	34,82
7	NEW HAMPTON	3,456	18,633.48	31,061	26.742	28,470
7	ONAWA	3,176	19,614.80	28,545	24,576	26,16
7	OSAGE	3,753	19,267.10	33,730	29.040	30,916
7	OSCEOLA	3,350	19,188.58	30,108	25,922	27,596
7	PELLA	5,198	24,824,10	46,717	40,221	42,820
						1

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

202	NAME	1960 1960	DISTRIBUTION OF ESTIMATED ISSU			
5 60 1	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOOT. ON ASE NEED	COSON NEED AND 405 ON POR
7	ROCKRAPIDS	2,780	14,803.58	24,985	21,51	22,90
7	SAC CITY	3,354	17,775.56	30,144	25,05	27,620
7	SHELDON	4 • 25.1	22+435+31	38,206	32,895	35,019
7	SIBLEY	2,852	14+349+35	25,632	22,069	23,49
7	ТАМА	2,925	16,429.73	26,289	22.63	24,095
7	TIPTON	2,862	14,764,34	25,722	22,146	23,576
7:	VINTON	4,781	24,151,19	42,969	36,99	39,385
7.	WAUKON	3,639	17+708-27	32,706	28,158	29,97
7)	WINTERSET	3,639	20+018+53	3.2+705	28,15	29+97
7	POP GROUP TOTAL	166,487	853,192,57	1,496,301	1,288,251	1,371,47
8	ACKLEY	1,731	9,016.66	15,557	12.75	13.87
8	ADEL	2,060	10,087.76	18,515	15.179	16.513
8	AKRON	1,351	7+014+91	12,142	9.95	10.829
8	ALTA	1,393	7,558,81	12,519	10.264	11,161
8	ALTON	1,048	5,820,48	9,419	7.722	8,40
8	AMANA VILLAGËS	1,678	8,837.+29	15,081	12,364	13,45
8	ANITA	1,233	6,235,41	11,082	9+086	9,884
8	ANKENY	2,964	6,891.50	26,639	21+840	23,760
8	ARNOLDS PARK	953	6+044+77	8,565	7,022	7,639
8	AVOCA	1,540	8,943,87	13,840	11,348	12,349
8	BEDFORD	1,807	11,214,84	16,241	13,314	14,489
8	BELLEVUE	2,181	10,833.52	19,602	16,071	17,483
8	BELMOND	2,506	12,162,50	22,522	18,466	20,088
8	BRITT	2,042	10,698.96	18,353	15-046	16,369
8	BROOKLYN	1+415	7+418+61	12,717	10+427	11,343
8	BUFFALO CENTER	1,140	6,095,26	10,246	8,400	9,138
8	CAMANCHE	2 • 225	6,796.19	19,997	16,394	17,836
l s	CARTER LAKE	2,287	6,633.56	20,554	16,852	18+333
8	CASCADE	1,601	7+284+04	14,389	11+797	12+833
8	CLARKSVILLE	1,328	6,784,96	11,936	9,785	10,645
8	CULFAX	2,331	12+779+35	20,950	17,176	18,686

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

....

5	NAME	(960)	1960	DISTRIBUTION OF ESTIMATED IDDI ROAD USE TAX FUNDS		
POP. C.	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IGO % ON ASE NEED	COLON NEED
8	COLUMBUS JCT	1,016	6,297.08	9,131	7,48	8,14
8	COON RAPIDS	1,560	9,398.02	14,020	11,494	12,50
8	CORNING	2,041	11,798.02	18,344	15,040	16,360
8	CORYDON	1,687	10,485.93	15,162	12,430	13,52
8	DUNLAP	1,254	7,900.84	11,270	9,240	10+05:
8	DURANT	1,266	6,027,95	11,378	9,329	10,14
8	DYERSVILLE	2,818	13,547.53	25,327	20,764	22,58
8	DYSART	1,197	6,106.47	10,758	8,820	9,59
8	ELDON	1,386	8,170,04	12,457	10,213	11+11
8	ELKADER	1,526	8,882.13	13,715	11,244	12,23
8	EXIRA	1,111	6,330.80	9,985	8,186	8,90
8	FAYETTE	1,597	8,237.31	14,353	11,768	12,802
8	FONDA	1,026	6,280,29	9,221	7,560	8,22
8	GARNER	1,990	9,510.21	17,885	14,663	15,952
8	GEORGE	1,200	6,784.96	10,785	8,843	9,619
8	GOWRIE	1,127	5,899.01	10,129	8,304	9.03
8	GRAETTINGER	879	5,697.15	7,900	6,47	7,046
8	GRAND JCT	949	5,809.26	8,529	6,992	7,60
8	GREENE	1,427	7,553.18	12,825	10,515	11,439
8	GREENFIELD	2,243	11,786.75	20,159	16,528	17,980
8	GRISWOLD	1,207	6,442.94	10,848	8,894	9,679
8	GRUNDY CENTER	2,403	11,97].86	21,597	17,706	19,263
8	GUTHRIE CENTER	2+071	11,450.33	18,613	15,260	16,601
8	GUTTENBERG	2,087	10,721.41	18,757	15,378	16,730
8	HAMBURG	1,647	11,697.08	14,802	12,136	13,203
8	HARTLEY	1,738	9,033.55	15,621	12,807	13,932
8	HOLSTEIN	1,413	7+491+50	12,699	10,411	11,326
8	HULL	1,289	6,319,53	11,585	9,498	10,333
8	IDA GROVE	2,265	12,347.55	20,356	16,690	18,156
8	JESUP	1+488	6,493.40	13,374	10,964	11,929
8	KEOSAUQUA	1,023	6,173,75	9,194	7,538	8,199
8	KEOTA	1,096	6,420.47	9,850	8,078	8,786
8	KINGSLEY	1,044	6+156+92	9,383	7,693	8,370

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

Ş	NAME	1960	1960	DISTRIBUTION OF ESTIMATED IDEN ROAD USE TAX FUNDS		
13 1904	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IGO % ON ASE NEED	GOLON NEED AND AOLON POR
8	LAKE CITY	2+114	12,941.92	19,000	15,576	16,945
8	LAKE MILLS	1,758	8,747,59	15,800	12,954	14+092
8	LAKE VIEW	1,165	6,493.39	10+470	8,584	9,339
8	LAMONI	2,173	12,313.88	19,530	16,012	17,420
8	LANSING	1,325	8,612.97	11,909	9,763	10,620
8	LA PORTE CITY	1,953	9,925.10	17,552	14,391	15+656
8	LAURENS	1,799	8,725.14	16+169	13,256	14,421
8	LE CLAIRE	1,546	6,302.74	13,894	11,392	12,393
8	LENOX	1,178	6,566,28	10,588	8,680	9,443
8	LEON	2,004	11,994.27	18,010	14,766	16,063
8	LOGAN	1,605	8 • 6 9 1 • 4 8	14,425	11,827	12,866
8	MCGREGOR	1,040	6.381.20	9+347	7,663	8,337
8	MADRID	2,286	10,255.99	20+546	16,844	18,325
8	MALVERN	1,193	7 + 082 • 17	10,722	8,791	9,563
8	MANILLA	939	5+803+67	8,439	6,919	7,528
8	MANLY	1,425	8+259-72	12+807	10,500	11,423
8	MANNING	1,676	10,098.97	15+063	12,349	13,434
8	MANSON	1,789	9,095.21	16+079	13,183	14,342
8	MAPLETON	1,686	10,412,98	15+153	12,423	13,515
8	MARCUS	1,307	7,082.18	11,747	9,631	10,476
8	MARENGO	2,264	12,061.52	20,347	16,682	18,148
8	MILFORD	1,476	7,710.22	13,266	10,876	11.833
8	MONONA	1+346	7 • 547 • 54	12+097	9,918	10,790
8	MONROE	1,366	6,212,98	12,277	10,065	10,949
8	MONTEZUMA	1,416	8,186.82	12,726	10,434	11,351
8	MOUNT AYR	1+738	10,054.11	15,620	12,806	13,932
8	MT VERNON	2+593	13,009.25	23,305	19,107	20,786
8	MYSTIC	761	6,913,92	6,839	5,607	6,100
8	NASHUA	1,737	9,022.33	15,612	12,799	13,924
8	NEW LONDON	1,694	8,467,22	15+225	12,482	13,579
8	NEW SHARON	1,063	6,106.47	9+553	7,833	8,521
6	NORA SPRINGS	1,275	7,048.50	11,459	9,395	10,221
8	NORTHWOOD	1,768	9,908.30	15,890	13,027	14,172
		1	1			1 1

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

30	NAME	1960	1980	DISTRIBUTION OF ESTIMATED IN ROAD USE TAX FUNDS		
13 19 19 19	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IGO %. ON ASE NEED	GOLON NEED AND 400 ON POR
8	OAKLAND	1,340	7,267,20	12,043	9,874	10,741
8	ODEBOLT	1,331	7,171.88	11,963	9,808	10,670
8	OGDEN	1,525	8,332,56	13,706	11,237	12,225
8	ORANGE CITY	2,707	12,145.67	24,329	19,946	21,699
18	PANORA	1,019	5+955+06	9,158	7,508	8,169
8	PERKERSBURG	1,468	7,289.63	13,194	10,817	11,767
8	PAULLINA	1,329	7,227,92	11,944	9,793	10,654
8	POCAHONTAS	2,011	10,928.86	18,074	14,818	16,120
8	POSTVILLE	1,554	7,530.75	13,967	11,451	12,457
8	PRIMGHAR	1,131	6,459.73	10,164	8,333	9,066
8	REINBECK	1,621	8+186+79	14,569	11,945	12,994
8	ROCK VALLEY	1,693	8+865+32	15,216	. 12,475	13,572
8	ROCKWELL CITY	2,313	13,082.10	20,788	17,043	18,541
8	SANBORN	1,323	7,497.12	11,890	9,748	10,605
8	SEYMOUR	1,117	6+857+83	10,040	8,231	8,954
8	SHEFFIELD	1,156	6+521+41	10,389	8,518	9,267
8	SHELL ROCK	1,112	5,680,29	9,994	8,194	8,913
8	SIDNEY	1,057	6,347.59	9,500	7,788	8,473
8	SIGOURNEY	2,387	13+138+21	21,453	17,589	19,134
8	SIOUX CENTER	2,275	10,429.76	20,447	16,763	18,237
8	SIOUX RAPIDS	962	5,663.45	8,646	7,088	7,713
8	SPIRIT LAKE	2+685	13+833-48	24,131	19,785	21,522
8	STATE CENTER	1,142	5,831.70	10,264	· 8,415	9,155
8	STORY CITY	1,773	8,663,46	15,935	13,064	14,213
8	STRAWBERRY PT	1,303	6,992.48	11,710	9,601	10,444
8	STUART	1,486	8+411+13	13,356	10,950	11,912
8	SUMNER	2,170	10,715.78	19,503	15,989	17,395
8	TOLEDO	2,850	11,809.20	25,614	21,001	22,846
8	TRAER	1,623	9+123+28	14,587	11,959	13,010
8	TRIPOLI	1,179	6,302,74	10,596	8,687	9,451
8	URBANDALE	5,821	9,964.39	52,316	42,892	46,662
[⁸	VILLISCA	1,690	10,306.43	15,189	12,452	13,547
18	WAPELLO	1,745	9+841+01	15+683	12+859	13,988
						1

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

ROUP	NAME	1960	1960	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS		
POP.C	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IDO". ON ASE NEED	GOLON NEED
8	WELLMAN	1,085	6,005.50	9,751	7,994	8,697
8	W BURLINGTON	2,560	9,050.34	23,008	18,864	20,521
8	WEST LIBERTY	2,042	10,463.48	18,353	15,046	16,369
8	WEST UNION	2,551	12,005.50	22,927	18,797	20,449
8	WHAT CHEER	956	6,274.65	8,592	7.044	7,664
8	WILTON JCT	1,750	8,108,29	15,728	12,805	14,028
8	WINDSOR HTS	5,906	7,928.86	53,080	43,518	47.343
8	WOODBINE	1,304	7,312.03	11,720	9,609	10.451
8	POP GROUP TOTAL	215,395	1,089,935.38	1,935,861	1,587,134	1,726,628
9	ACKWORTH	77	532.67	692	. <u>5</u> 99	636
9	ADAIR	742	4,637.32	6.669	5.770	6.120
9	AFTON	773	5,248,51	6,947	6.010	6.384
9	AGENCY	702	2,928,25	6.309	5.459	5.700
9	AINSWORTH	371	2.220.52	3.335	2.885	3.065
9	ALBERT CITY	722	4,127,05	6.489	5.615	5.964
9	ALBION	588	2,758,78	5,284	4.572	4.857
9	ALBURNETT	341	1,424,27	3.065	2.652	2.817
9	ALDEN	838	4 • 648 • 53	7,532	6.516	6.922
9	ALEXANDER	294	1,558.83	2,642	2.286	2,428
9	ALLERTON	692	4+267+23	6,219	5.381	5.716
9	ALLISON	952	4,223.30	8,556	7.403	7.865
ò	ALTA VISTA	276	1,749.48	2,481	2.146	2.280
9	ALTOONA	1,45.8	4,278,44	13,104	11 338	12.043
9	ALVORD	238	1,474.74	2,139	1.851	1.967
9	ANDOVER	91	448.59	817	707	751
9	ANDREW	349	1,570.01	3,137	2.714	2.883
9	ANTHON	681	4,317.68	6,121	5,296	5,626
9	APLINGTON	840	3,936.30	7,549	6,532	5,930
9	ARCADIA	437	2,383.15	3,928	3.398	3.610
9	ARCHER	209	936 . 37	.878	1.625	1,726
9	AREDALE	153	1+143+89	1,375	1.190	1.264

•

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

.

504	NAME	1960	1960	DISTRIBUTION OF ESTIMATED 1988 ROAD USE TAX FUNDS		
D aio	CITY OR TOWN	POPULATION	APPORTIONMENT	ICO % ON POPULATION	IOO% ON ASE NEED	BOSON NEED AND 405 ON POR
9	ARION	201	1,233.56	1+807	1,563	1+661
12	ARISPE	125	616.74	1,123	972	1,032
19	ARLINGTON	614	3,706.47	5,518	4,774	5,072
12	ARMSTRONG	958	5,287.79	8,610	7,450	7,914
12	ARTHUR	265	1,362.54	2,382	2,061	2+189
9	ASBURY	71	291.58	638	552	586
12	ASHTON	615	3,297,11	5,527	4,782	5+080
12	ASPINWALL	95	599•93	854	739	786
121	ATALISSA	212	1,143.87	1,906	1,648	1,751
2	ATHELSTAN	75	644.82	674	583	620
121	ATKINS	527	2,170.05	4,736	4 • 0 9 8	4,352
14	AUBURN	367	1,962.57	3,298	2,854	3,033
19	AURELIA	904	4,525.18	8,125	7,030	7,461
19	AURORA	223	1,261.63	2,004	1,734	1+842
121	AYRSHIRE	298	1,872.82	2,679	2,317	2:461
2	BADGER	340	1,687.82	3,055	2,644	2,810
2	BAGLEY	406	2,198,11	3,649	3,157	3,353
121	BALDWIN	228	1,166.29	2,049	1,773	1,884
2	BALLTOWN	43	274+71	387	334	355
121	BANCROFT	1,000	5,052,26	8,987	7,777	8,261
19	BANKSTON	36	224•28	324	280	297
19	BARNES CITY	273	1,807,97	2,454	2,122	2,255
21	BARNUM	154	1,082,19	1,384	1,198	1,272
2	BASSETT	130	700.88	1,168	1,011	1,074
2	BATAVIA	533	2,938.25	4,790	4,144	4+403
19	BATTLE CREEK	786	4,895.29	7,064	6,113	6+493
19	BAXTER	681	3,465.38	6,121	5,295	5,625
2	BAYARD	597	3,555.08	5,365	4,642	4,932
19	BEACON	718	2,080.31	6,454	5,584	5,931
9	BEACONSFIELD	71	583.12	638	552	587
9	BEAMAN	247	1,070,98	2,220	1,920	2,040
9	BEAVER	115	639.19	1,033	895	950
19	BENNETT	374	2,001,80	3,361	2,908	3,089
		1	1	ľ		

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

B	NAME 1960	1960	1980	DISTRIBUTION OF ESTIMATED 1900 ROAD USE TAX FUNDS		
13 19 19 19	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	100% ON ASE NEED	BOLON NEED AND 400 ON POR
9	BENTON	84	717.73	755	65	694
9	BERKLEY	58	398.09	522	451	47
9	BERNARD	173	835.47	1,554	1,346	1,429
9	BERTRAM	170	717•70	1,528	1,322	1,40
9	BEVINGTON	55	269•16	495	42	45
9	BIRMINGHAM	441	3,605,56	3,963	3,429	3,644
9	BLAIRSBURG	287	1,441.09	2,580	2,232	2,370
9	BLAIRSTOWN	583	2,932.64	5,239	4,534	4,816
9	BLAKESBURG	401	2,248,52	3,604	3,118	3,31
9	BLANCHARD	174	1,199.96	1,564	1,353	1,436
9	BLENCOE	286	1,839,18	2,570	2,224	2,364
9	BLOCKTON	343	2,282,20	3,083	2,667	2,831
9	BLUE GRASS	568	1,889.67	5,105	4,417	4,692
9	RODE	430	2,758.78	3,865	3.344	3,552
9	BONAPARTE	574	3,599,98	5,159	4,463	4.741
9	BONDURANT	389	1,839,18	3,496	3,025	3,212
9	BOUTON	145	891.52	1,303	1,127	1,199
9	BOXHOLM	250	1,704.62	2.247	1,945	2,064
9	BOYDEN	562	3,033,56	5,051	4.370	4,644
9	BRADDYVILLE	176	1,396.21	1,581	1,368	1,454
9	BRADGATE	166	1,054.17	1,492	1,291	1,370
9	BRANDON	322	1,788.77	2,894	2,504	2,66
9	BRAYTON	225	1,340.11	2,023	1,750	1+858
9	BREDA	543	2,837.35	4,880	4,222	4,486
9	BRIDGEWATER	225	1,659.75	2,022	1,750	1.854
9	BRIGHTON	724	3,053,17	6,507	5.630	5.980
9	BRISTOW	223	1,755.10	2,004	1.734	1.842
9	BRUNSVILLE	128	628.03	1,151	995	1.05
9	BUCKEYE	190	1,076.58	1,707	1.478	1.571
9	BUCK GROVE	40	375.66	360	311	
9	BUFFALO	1,088	3.897.14	9.778	8.460	8.080
9	BURT	620	3.207.40	5.572	4.821	1 5.12A
9	BUSSEY	557	3,549.48	5.006	4.33	4.603
					49000	

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

.

Ş	NAME	1960	1960	DISTRIBUTION OF ESTIMATED IDE ROAD USE TAX FUNDS		
3 404	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	ICO % ON ASE NEED	40% ON NEED AND 40% ON POR
9	CALAMUS	435	2,136.38	3,910	3,382	3,594
9	CALLENDER	358	2,170,05	3,217	2,784	2,95
9	CALMAR	954	5,254.14	8,574	7,418	7+880
9	CALUMET	225	1,401.82	2,023	1,750	1+859
9	CAMBRIDGE	587	3,213.03	5+275	4,565	4+848
9	CANTRIL	299	1,979.35	2,688	2,325	2+470
19	CARBON	162	1,581.26	1,456	1,260	1,339
9	CARLISLE	1,317	5,063.46	11,836	10,240	10,879
9	CARPENTER	177	925.20	1,591	1,377	1,463
9	CARSON	583	3,342,00	5,240	4,533	4,816
19	CASEY	589	3,942.02	5,293	4,580	4+865
9	CASTALIA	216	1,239.22	1,941	1,680	1,789
19	CASTANA	230	1,485.92	2,068	1,789	1+899
9	CASTLE HILL	932	2,383.13	8,376	7,247	7,699
9	CENTER JCT	201	857.92	1,806	1,563	1,661
12	CENTER POINT	1,236	5,534,49	11,109	9,611	10,210
12	CENTRAL CITY	1,087	5,411.12	9,769	8,453	8,980
19	CENTRALIA	85	437.33	764	661	701
19	CHARLOTTE	417	2,394.34	3,748	3,243	3+445
9	CHARTER OAK	665	3,981.26	5,977	5,171	5,493
19	CHATSWORTH	84	571.92	755	653	694
19	CHELSEA	453	2,702.73	4,071	3,522	3,743
12	CHESTER	211	1,267,26	1,896	1,641	1,742
9	CHIELICOTHE	148	1,099,01	1,331	1,151	1+223
19	CHURDAN	586	3,325.18	5,266	4,557	4,841
9	CINCINNATI	583	3,942.02	5+240	4,533	4+816
2	CLARE	245	1+003+66	2+202	1,906	2+024
9	CLARENCE	859	4,435.44	7,720	6,679	7∍096
12	CLAYIUN	130	762+61	1,168	1,011	1+073
12	CLEARFIELD	504	3,067.22	4,530	3,919	4+164
19	CLEGHORN	228	1,379.39	2+049	1,773	1+883
12	CLEMONS	198	1,132,68	1,780	1,540	1,635
19	CLERMONT	570	3 • 504 • 58	5,123	4,432	4,709
1		l	ļ			l l

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

N	NAME OF	1960		DISTRIBUT ROAD	TED ISON	
Ĭ	CITY OR TOWN	POPULATION	APORTIONMENT	IOO % ON POPULATION	ICO %	COLON NEED
1	CLIO	120	908+35	1+078	959	
1	CLIVE	752	4,340.11	6,759	5,848	6,211
ו	CLUTIER	292	1,693.42	2,624	2,271	2,413
ľ	COBURG	54	465.39	485	420	446
ľ	COGGON	672	3,386.83	6+040	5,225	5,551
2	COIN	346	2,282,20	3+110	2,691	2,858
2	COLESBURG	365	1,827.97	3,280	2,838	3,015
ľ	COLLEGE SPRS	290	2,063.53	2,607	2,255	2,396
Ľ	COLLINS	435	2,422.38	3,909	3,382	3,593
Ľ	COLO	574	3,016,75	5+159	4 • 464	4,742
Ľ	COLUMBUS CITY	327	1,962.57	2,939	2,543	2,701
Ľ	COLWELL	119	684+07	1,069	925	983
2	CONESVILLE	248	1,413.04	2,229	1,929	2,049
2	CONRAD	799	3,639.19	7,181	6,213	6,600
2 I	CONWAY	82	942+00	737	637	677
2	COPPOCK	61	454.16	548	475	504
2	CORALVILLE	2,357	5,478.41	21,184	18,328	19,471
2	CORRECTIONVILLE	912	5,562.57	8,197	7,092	7,533
9	CORWITH	488	2,691.56	4,385	3,795	4+032
2	COTTER	52	274•71	468	404	429
9	COULTER	315	1,519.60	2,831	2,449	2,602
9	CRAIG	117	796+18	1,051	910	967
9	CRAWFORDSVILLE	317	1,603.69	2,849	2,465	2,618
9	CRESCENT CITY	296	1,288.08	2,661	2,302	2,445
9	CROMWELL	138	824-25	1+240	1,073	1,141
9	CRYSTAL LAKE	267	1,603.71	2+400	2,076	2+205
9	CUMBERLAND	425	2,764,45	3,819	3,305	3,511
9	CUMMING	148	734+54	1,330	1,151	1,222
9	CURLEW	134	846•68	1+205	1,042	1,107
9	CUSHING	261	1,390.62	2,346	2,030	2,156
9	CYLINDER	161	801.82	1,447	1,252	1,330
9	DAKOTA CITY	706	3,571.89	6,345	5,490	5,832
01	DALLAS	392	2.360.71	3.523	3.048	3.238

COMPARISON OF METHODS

Ψ.

.

For

DISTRIBUTION OF ROAD USE TAX FUNDS

AMONG CITIES AND TOWNS

202	NAME	1960	1960	DISTRIBUTION OF ESTIMATED 1988 ROAD USE TAX FUNDS		
13 40 4	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	100% ON ASE NEED	BOLON NEED AND 406 ON POR
9	DALLAS CENTER	1,083	5,293.39	9,733	8,421	8,94
9	DANA	123	1,031.73	1,106	951	1,010
191	DANBURY	510	3,370.02	4,583	3,966	4,212
19	DANVILLE	579	2,523.30	5,204	4,502	4,78
9	DAVIS CITY	346	2,422.36	3,110	2,691	2,85
9	DAWSON	257	1,603.69	2,310	1,998	2,12
19	DAYTON	820	4,446.70	7,369	6,376	6,774
2	DECATUR CITY	203	1,099.03	1,825	1,579	1,676
9	DEDHAM	322	2,018.65	2,894	2,504	2,66
191	DEEP RIVER	329	2,125,18	2,957	2,558	2,71
[2]	DEFIANCE	386	2,063,53	3,469	3,002	3,180
19	DELAWARE	167	1,076.58	1,501	1,298	1,380
19	DELHI	464	2,147,63	4,170	3,608	3,83
19	DELMAR	556	2,327.05	4,997	4,324	4,594
?	DELOIT	222	1,317,66	1+995	1,726	1,83
[2]	DELPHOS	48	414.90	432	374	396
2	DELTA	514	3,151.36	4,619	3,996	4,24
[2]	DENVER	831	3,560,68	7,469	6,462	6,865
9	DERBY	151	1,087.81	1,357	1,175	1,246
12	DE SOTA	273	1+570+03	2,453	2,123	2,256
14	DEXTER	670	3,605.58	6,022	5,209	5,535
191	DIAGONAL	443	2,646.67	3,981	3,445	3,659
12	DICKENS	241	1,743.88	2,166	1,874	1,991
121	DIKE	630	2,899.01	5,663	4,899	5+204
12	DIXON	280	1,166,29	2,516	2,178	2,313
19	DOLLIVER	122	728.91	1,097	948	1,008
2	DONAHUE	133	588+76	1,195	1,035	1,099
12	DONNAN	32	201.86	287	248	264
12	DUNNELLSON	709	3,302.75	6,373	5,514	5,857
19	DOON	436	2+899+01	3,918	3,390	3,601
12	DOUGHERTY	398	1+188-73	3,577	3,095	3+288
19	DOW CITY	531	2,938.25	4,773	4,129	4+387
19	DUWS	882	5,315.82	7,927	6,859	7,286
14			l l			

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

ROUP	NAME	1960	1960	DISTRIBUTION OF ESTIMATED IN ROAD USE TAX FUNDS		
POP G	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOO % ON ASE NEED	AND AOS ON POR
9	DRAKESVILLE	197	1+244+86	1,770	1,532	1,627
9	DUMONT	719	4,026.11	6,462	5,591	5,940
9	DUNCOMBE	355	2,119,55	3+191	2,760	2,932
9	DUNDEE	185	986.87	1,662	1,438	1,528
9	DUNKERTON	507	2,293,36	4,557	3,943	4+188
9	DURANGO	37	398.09	332	288	306
2	EARLHAM	788	4,323.32	7,083	6,127	6,509
2	EARLING	431	1,912.10	3,873	3,352	3,560
12	EARLVILLE	668	3,706.47	6,004	5,194	5,518
2	EARLY	824	4,160.67	7,406	6,408	6,808
2	EAST PERU	173	1,143.87	1,554	1,345	1,429
2	EDUTVILLE	1,014	5+276+58	9,114	7 +885	8,376
2	EDGEWOOD	767	3,902.73	6,893	5,965	6,336
2	ELBERON	211	1,261,63	1+896	1,640	1,743
2	ELDRIDGE	583	2,108.37	5+240	4,534	4,816
2	ELGIN	644	3,599.98	5,788	5,008	5,320
9	ELKHART	260	1.244.85	2,337	2,021	2,147
9	ELK HORN	679	3,173.81	6,102	5,280	5+609
9	ELKPORT	100	555.09	899	778	826
9	ELK RUN HTS	1,124	869.10	10,102	8,740	9,286
9	ELLIOTT	459	2,702.73	4,125	3,569	3,791
9	ELLSTON	116	885.93	1,043	902	958
2	ELLSWORTH	493	2,461.61	4,431	3,834	4,072
9	ELMA	706	4,099.03	6,345	5,490	5+832
9	ELY	226	869.10	2,031	1,757	1,868
9	EMERSON	521	3+117+67	4,683	4.052	4,304
9	EPWORTH	698	3,005.56	6,273	5,427	5.765
9	ESSEX	767	4,278.44	6,893	5,965	6.336
9	EVERLY	668	3,067,22	6+004	5,194	5,519
9	EXLINE	223	1,917.68	2,004	1,734	1.842
9	FAIRBANK	650	3,661.61	5,842	5,055	5,369
9	FAIRFAX	528	1,878.46	4,745	4,106	4.361
9	FARLEY	920	4,177.50	8,269	7.154	7.601

۸

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

٠.

502	NAME	1960	1880	DISTRIBUTION OF ESTIMATED ISSUE ROAD USE TAX FUNDS		
U dou	CITY OR TOWN	POPULATION	APPORTIONMENT	IOO % ON POPULATION	100% ON ASE NEED	GOLON NEED AND 4000 POR
9	FARMERSBURG	250	1,474,75	2,247	1,944	2,065
9	FARMINGTON	902	5+041+05	8,106	7,014	7,450
19	FARNHAMVILLE	409	2,237,33	3,676	3,180	3,380
19	FARRAGUT	495	2,775,65	4 • 4 4 9	3+849	4,088
19	FENTON	440	2,500,90	3,955	3,422	3,635
2	FERGUSON	186	998+09	1,671	1,446	1,53
12	FERTILE	386	2,226.08	3,469	3,002	3,188
19	FLORIS	187	1,205,56	1,681	1+454	1,549
19	FLOYD	401	2,467.23	3,604	3+118	3,312
19	FONTANELLE	729	4,553.22	6,552	5,669	6,022
19	FORT ATKINSON	353	1,530.77	3,173	2,745	2,91
191	FOSTORIA	167	824•25	1,500	1,298	1,379
19	FRANKLIN	174	818+63	1,564	1,353	1,431
191	FRASER	134	1,227,98	1,205	1,042	1,108
19	FREDERICKSBURG	797	3,930.76	7,163	6,198	6,583
191	FREDERIKA	249	1,177,54	2,238	1,936	2,051
19	FREDONIA	147	745.77	1,321	1,143	1,214
9	FREMONT	461	2,641.06	4,143	3,585	3,809
19	GALT	75	656.06	674	583	619
191	GALVA	469	2,758.78	4,215	3,647	3,874
9	GARBER	148	857.92	1,330	1,151	1,222
9	GARDEN GROVE	335	2,338.27	3,011	2,605	2,768
9	GARNAVILLO	662	3,257.88	5,950	5,148	5,469
9	GARRISON	421	2,562.58	3,784	3,274	3,477
9	GARWIN	546	2,904.62	4,907	4.245	4.511
9	GENEVA	219	1,356.95	1,968	1.704	1,809
9	GIBSON	77	459.75	692	598	636
9	GILBERT	318	1,665,39	2,858	2.473	2.626
9	GILBERTVILLE	533	2.237.33	4,790	4,145	4.403
9	GILMAN	491	2,848.53	4.413	3.818	4.057
9	GILMORE CITY	688	4+183-10	6,184	5,350	5,683
9	GLADBROOK	949	4,833.57	8,529	7,379	7,840
9	GLIDDEN	993	5,585,00	8,924	7,722	8,202
• •		I	•	J J		•

.

.

Comparison of Methods

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

Š	NAME	1860	1960	DISTRIBUT	ION OF ESTIM	ATED 1900
3 60 4	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOOT. ON ASE NEED	COLON NEED AND 405 ON POR
9	GOLDFIELD	682	3 . 728 . 92	6,130	5,303	5,634
9	GOODELL	231	1+356+94	2,076	1,797	1,909
9	GOOSE LAKE	191	829+85	1,716	1,485	1,571
9	GRAF	47	246•71	423	365	388
9	GRAFTON	273	1,558,83	2,453	2,123	2.256
9	GRAND MOUND	565	2,949.48	5,078	4.394	4.66
9	GRAND RIVER	284	1,962.57	2,553	2,208	2.346
9	GRANDVIEW	300	1,743.89	2,696	2,333	2.478
9	GRANGER	468	1,682,15	4,206	3,639	3.866
9	GRANT	180	1,328,95	1.618	1.400	1.48
9	GRANVILLE	381	1,962,57	3,424	2,962	3,14
9	GRAVITY	275	2,069.08	2,472	2,139	2,272
9	GRAY	152	1,026,11	1,366	1.182	1,256
9	GREELFY	369	2,018.65	3,316	2.869	3.047
[9]	GREEN ISLAND	97	672.88	872	754	802
9	GREENVILLE	173	970.09	1,555	1.346	1.420
9	GRIMES	697	3,263,51	6.264	5.420	5.758
9	GRUVER	140	756.97	1.258	1.089	1.154
9	GUERNSEY	108	633.64	971	839	892
9	HALBUR	214	1,317.66	1,923	1.664	1.768
9	HAMILTON	197	1,373.78	1,771	1.532	1.628
9	HANCOCK	252	1.480.34	2,265	1.960	2.081
9	HANLONTOWN	193	1,441,09	1.734	1.501	1.594
9	HANSELL	168	1,065.38	1,510	1.306	1,388
9	HARCOURT	268	1,699.00	2.409	2.084	2,214
9	HARDY	110	779.40	989	2,004	009
9	HARPER	177	1,020,51	1.590	1.376	1.463
9	HARPERS FERRY	211	1,413.02	1.897	1.661	1.7/2
9	HARRIS	258	1,788.75	2.318	2.004	2,122
9	HARTFORD	271	1,239,22	2.436	2,107	2,229
9	HARTWICK	126	599.91	1,122	020	1.0/1
9	HARVEY	270	1.940-14	2.427	2,000	2,220
9	HASTINGS	260	1.727.04	2,327	2.077	272.20
t l				2,777	C 9 V Z Z	27148

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIRS AND TOWNS

ROUP	NAME	1980	1960	DISTRIBUTION OF ESTIMATED 1981 ROAD USE TAX FUNDS		
9 904	CITY OR TOWN	POPULATION	ANPORTIONMENT	IOO % ON POPULATION	ICO% ON ASE NEED	BOSON NEED AND AOSON POR
9	HAVELOCK	289	1,721.43	2,597	2.247	2,387
9	HAWKEYE	516	2,865.36	4.638	4.013	4,262
19	HAYESVILLE	122	768.21	1,096	949	1,009
9	HAZLETON	665	3,084.05	5,977	5,171	5,492
9	HEDRICK	762	4+110-21	6,848	5,925	6 295
9	HENDERSON	191	1,166,29	1,717	1,485	1,579
19	HEPBURN	49	358.84	440	382	404
9	HIAWATHA	1,336	1,222.43	12,008	10,388	11+037
9	HILLS	310	1,390.62	2,786	2,411	2,560
9	HILLSBORO	218	1,418.66	1,959	1,695	1,801
9	HINTON	403	1,934.50	3,622	3,134	3,329
9	HOLLAND	264	1,239,22	2,373	2,053	2,181
9	HOLY CROSS	157	779.40	1,411	1,221	1,297
9	HOPKINTON	768	4,099.03	6,902	5,972	6.344
9	HORNICK	275	1,738.23	2,472	2,138	2,272
9	HOSPERS	600	3,386.84	5,392	4.666	4.956
9	HUBBARD	806	4,687.77	7,244	6.267	6.658
9	HUDSON	1,085	3,437.29	9,752	8.438	8,963
9	HUMESTON	638	4,205.53	5.734	4 • 961	5 270
9	HURSTVILLE	105	465.38	943	816	868
9	HUXLEY	486	2,366.31	4,368	3,779	4.014
9	IMOGENE	264	1,536.40	2,373	2.053	2.181
9	INWOOD	638	3,611,13	5,734	4,961	5,270
9	IONIA	265	1,687.82	2,382	2,061	2,189
9	IRETON	510	3,213.03	4,583	3,966	4.213
9	IRWIN	425	2,136.39	3,820	3,305	3,511
19	JACKSON JCT	89	599.93	800.	692	736
9	JAMAICA	256	1,699.00	2,301	1,990	2,114
19	JANESVILLE	648	2,495.30	5,823	5.039	5.352
191	JEWELL	1,113	5,455.97	10+004	8.655	9,195
19	JOICF	231	1,368.17	2,076	1.796	1,908
9	JOLLEY	120	1,093.39	1,078	934	992
9	KALONA	1,235	5,310.24	11,100	3,603	10.201
11		ł	{			

- 1

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX PUNDS AMONG CITIES AND TOWNS

202	NAME		NAME 1960 1960			
POP G	CITY OR TOWN	POPULATION	APPORTIONMENT	IDO % ON POPULATION:	IOOT. ON: ASE NEED	COLON NEED
9	KAMRAR	268	1,463.49	2,408	2+08	÷ 2,214
19	KANAWHA	735	4 • 188 • .7	6,606	5,71	6,072
9	KELLERTON	34.	. 2,708.3	i 3,065	2,65	2,817
19	KELLEY	239	1,368,.1	29.148	1,85	1,974
9	KELLOGG	623	; 3,756,93	5,599	4,844	5,145
19	KENSETT	409	2,377.51	3,676	3.18	3,379
9	KENT	94	947.64	849	73	: 776
2	KESWICK	265	1,547.6	2,381	2,06	2,190
12	, KEYSTONE	, 522	2,456.01	: 4.697	4,06	4,31
12	; KIMBALLTON	. 380	2,399.94	3,415	2,95	3,140
.9	KINRUSS	103	, 588 . 76	926	80	85
17	R I REMAN	92	734.54	821	71	760
12	RIRRVILLE	203	1 • 194.•.3	1,824	1,571	1,676
Ľ		271	1,429:.90	2,436	2,10	2,239
Ž		615	3,112,07	5,521	4,78	5,08
		153	745.79	1,379	1,190	1,26
12	LACONA	396	2,4.11.15	3,559	3,079	3,270
		307	1,530.77	2,759	2,38	2,53
12	LAKE PARK	952	5,181,22	8,557,	7,401	7,866
		306	1,227,98	2,750	2,380	2,528
		459	2,484.06	4,129	3,569	· 3,79
	LAMBS GROVE	234	611.20	2,103	1,820	n 1,933
		554	3,218,67	4,979	, 4,301	4,576
		323	1,570.01	2,903	2,51	2,669
12	LANESBORD	258	1,570.03	2,319	2,006	. 2+13
12		531	2,327.05	4,772	4,130	4.38
12		167	885.92	1,501	1,298	1,379
12		445	2,433.58	4,000	3,460	3+67
12		223	1,441.09	2,004	1,735	1+842
12		532	3,022.35	4,781	4+136	4,394
12		324	1,424.27	2,912	2,520	2,67
12		289	1,833.58	2,597	2,247	2,38
17	LE GRAND	465	2,203.68	4+180	3,616	3 84
[]			T i	I I		[[

COMPARISON OF METHODS

.

For

DISTRIBUTION OF ROAD USE TAX FUNDS

AMONG CITIES AND TOWNS

S	NAME	1960	1960	DISTRIBUTION OF ESTIMATED ISSN ROAD USE TAX FUNDS		
13 1904	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOO% ON ASE NEED	40% ON POR
9	LEHIGH	846	4,940.11	7,603	6,579	6,980
9	LEIGHTON	167	661.60	1,501	1,298	1,37
19	LELAND	209	1,171,92	1,878	1,626	1,72
9	LE ROY	70	510•25	629	544	578
9	LESTER	239	1,216.76	2,148	1,858	1,97
9	LETTS	392	2,265.40	3,524	3,049	3,23
9	LEWIS	501	2,865.36	4,502	3,895	4,139
9	LIBERTYVILLE	368	1,743.88	3,308	2,862	3,039
9	LIDDERDALE	201	1,009.31	1,806	1,563	1,66
9	LIME SPRINGS	581	3,089.66	5,222	4,518	4,799
9	LINCOLN	183	1,087.81	1,645	1,423	1,512
9	LINDEN	258	1,626.13	2,318	· 2+006	2,132
9	LINEVILLE	452	2,702.72	4,063	3,515	3,734
9	LINN GROVE	330	1,794.33	2,966	2,566	2,725
9	LISBON	1,227	5,338.23	11,027	9,541	10,136
9	LISCOMB	295	1,558.83	2,652	2,294	2,43
9	LITTLEPORT	119	779.40	1,069	926	983
9	LITTLE ROCK	564	2,988.73	5,069	4,385	4,659
9	LITTLE SIOUX	295	1,956.93	2,651	2,295	2,436
9	LIVERMORE	545	3,448.55	4,898	4,237	4,505
9	LOCKRIDGE	206	1,306.52	1,852	1,602	1,701
9	LOHRVILLE	653	3,913.96	5,869	5.078	5.399
9	LONE ROCK	185	1,054.18	1,662	1,438	1,528
9	LONE TREE	717	3,583.11	6,444	5,576	5,922
9	LONG GROVE	182	874.73	1,636	1,415	1.504
9	LORIMOR	460	2,831.73	4,134	3,577	3,800
9	LOST NATION	567	3,123.32	5,096	4,409	4.684
9	LOVILIA	630	3,470.99	5,662	4,899	5.204
9	LOWDEN	641	3,599.98	5,761	4 985	5,299
9	LOW MOOR	343	1,564.47	3,083	2.667	2.830
9	LUANA	276	1,233.56	2.481	2.146	2.270
9	LUCAS	357	2,355.09	3,208	2,776	2.950
9	LUTHER	147	734.54	1,321	1,143	1.214
ł						1 7 6. 4

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

P	NAME	1960	1880	DISTRIBUT ROAD	ION OF ESTIM	ATED ISSI
POP G	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOD% ON ASE NEED	AND AND POR
9	LU VERNE	468	3,100,85	4,207	3,640	3,864
9	LUXEMBURG	159	672+88	1,429	1,236	1,31
9	LUZERNE	136	1,042,97	1,222	1,058	1,12
9	LYNNVILLE	411	2,276,55	3,694	3,198	3,395
19	LYTTON .	376	2.,091.53	3,379	2 • 924	3,10
19	MCCALLSBURG	272	1,626,13	2,445	2,115	2,24
9	MCCAUSLAND	173	841+07	1,554	1,349	1,429
19	MCCLELLAND	150	89151	1,349	1,166	1,239
19	MCINTIRE	270	1,682.17	2.9426	2.,100	2,230
19	MACEDONIA	290	1,671,00	2,607	2,255	2,396
2	MACKSBURG	174	1,233,58	1,563	1,353	1,43
[9]	MAGNOLIA	215	1,160.67	1,933	1+672	1,776
9	MALCOM	416	2,276,57	3,738	3,235	3,43
9	MALLARD	431	2,237,33	3+874	3,351	3,560
19	MALOY	68	504.64	611	529	562
19	MARATHON	516	3,168,17	4,638	4,012	4,263
9	MARBLE ROCK	442	2,635.43	3,972	3 + 437	3+651
9	MARNE	205	1,199,96	1,843	1,595	1,694
9	MARQUETTE	572	3,594,33	5,140	4,448	4,724
9	MARTELLE	247	1,278,45	2,220	1,920	2,04
191	MARTENSDALE	316	902.75	2,840	2,457	2,610
9	MARTINSBURG	172	1+227+98	1,546	1,338	1,421
9	MARYSVILLE	113	925.20	1,016	879	933
9	MASONVILLE	168	745.77	1,510	1,306	1,388
9	MASSENA	456	2,573.77	4,098	3,546	3.767
9	MATLOCK	103	583.12	926	801	851
9	MAURICE	237	1,435.45	2,130	1,843	1,95
9	MAXWELL	773	4,497.08	6,947	6,011	6.386
9	MAYNARD	515	2,551,31	4.629	4,004	4,254
9	MAYSVILLE	126	392.47	1,132	980	1.041
9	MECHANICSVILLE	1,010	4,766,33	9,078	7.854	8.341
9	MEDIAPOLIS	1,040	4,676.58	9,346	8.087	8.501
9	MELBOURNE	517	2,859.79	4.647	4.021	4.273
]				

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS

AMONG CITIES AND TOWNS

ROUP	NAME	1960	1860	DISTRIBUTION OF ESTIMATED 1901 ROAD USE TAX FUNDS		
9 90 C	CITY OR TOWN	POPULATION	ANPORTIONMENT	ICO % ON POPULATION	IOO% ON ASE NEED	BOSON NEED AND 405 ON POR
9	MELCHER	867	5,035.45	7,792	6,741	7,162
19	MELROSE	214	1,738.23	1,923	1,664	1,767
9	MELVIN	364	1,822.39	3,272	2,831	3,006
9	MENLO	421	2,360.71	3,784	3,274	3,479
19	MERIDEN	192	919.58	1,725	1,493	1,585
9	MERRILL	645	3,392.44	5,797	5+015	5,329
9	MESERVEY	331	1,665.37	2,975	2,574	2,734
9	MIDDLETOWN	245	1,284.06	2,202	1,905	2,024
19	MILES	376	1,928.90	3,379	2,924	3,106
9	MILLERSBURG	186	1,121.46	1,672	1,447	1,536
9	MILLERTON	90	784.98	809	699	744
9	MILO	468	2,943.89	4,206	3,640	3,866
9	MILTON	609	4,031.71	5,473	4,735	5,030
9	MINBURN	357	1,979.35	3,209	2.776	2,950
9	MINDEN	355	1,839,18	3,190	2,761	2,932
9	MINGO	260	1,272.81	2,337	2,022	2,148
9	MITCHELL	237	628.00	2,130	1,843	1,958
9	MITCHELLVILLE	957	5,080.32	8,601	7,441	7,905
9	MODALE	276	1,586.90	2,481	2,146	2,280
9	MONDAMIN	436	2,742.00	3,918	3,391	3,602
9	MONETA	76	499.05	683	591	627
9	MONMOUTH	291	1,110,25	2,616	2.263	2.404
9	MONTOUR	452	2,130.81	4,062	3,515	3.734
9	MONTROSE	632	3,605.58	5,680	4,914	5,221
9	MOORHEAD	313	2,198,11	2,813	2.434	2.585
9	MOORLAND	281	1,390,62	2.526	2.185	2.322
9	MORAVIA	621	3,656.00	5,581	4,829	5,130
9	MORLEY	124	880.35	1,114	964	1,024
9	MORNING SUN	875	5,265.37	7,865	6,804	7,228
9	MORRISON	139	947.64	1,249	1.081	1.148
9	MOULTON	773	5,523.26	6,947	6,011	6,386
9	MT AUBURN	186	1,211.15	1,672	1.447	1,537
9	MT STERLING	86	807.40	773	668	710
l i			1	-		

ו כי די די

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

205	NAME	1960	1960	DISTRIBUTION OF ESTIMATED IN ROAD USE TAX FUNDS		
0 60 6	CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IGOT ON ASE NEED	40%ON NEED AND 40%ON POR
9	MT UNION	176	926.38	1,581	1.369	1.454
19	MOVILLE	1,156	5,405.48	10.390	8.989	9.54
19	MURRAY	613	4,300.89	5,509	4,767	5.06
19	NEMAHA	151	1,031.74	1,357	1,174	1.24
19	NEOLA	870	4,704.60	7,820	6.765	7,18
19	NEW_ALBIN	643	3,184,97	5,779	5,000	5,31
12	NEWELL	893	4,956,93	8,025	6,944	7 37
19	NEWHALL	495	2,052,28	4,449	3.850	4.088
12	NEW HARTFORD	649	3,274,68	5,833	5.046	5,36
12	NEW LIBERTY	145	706+48	1,303	1,128	1,199
12	NEW MARKET	506	3,213,03	4,548	3,934	4,179
[^y]	NEW PROVIDENCE	206	1+188+73	1,851	1,602	1,702
2	NEW VIENNA	265	1+143+89	2,382	2.061	2,189
	NEW VIRGINIA	381	1,917.68	3,424	2,963	3,148
ľ	NICHOLS	329	1,951.33	2,957	2,558	2,71
12	NODAWAY	204	1,306,52	1,834	1,587	1,686
12	NORTHBORO	135	936+38	1,213	1,049	1,114
2	N BUENA VISTA	150	829.85	1,348	1.167	1,239
121	NORTH ENGLISH	1,004	4,783,11	9,023	7,807	8,295
וצו	NORTH LIBERTY	334	1,732,66	3,002	2,597	2,758
12	N WASHINGTON	156	891.51	1,402	1,213	1,289
121	NORWALK	1,328	2,439.16	11,936	10,327	10,970
12	NORWAY	516	2+472-87	4,637	4,012	4,262
12	NUMA	202	1,390.62	1,816	1,571	1,670
[2]	OAKVILLE	346	2,018.65	3,109	2,691	2,857
12	OCHEYEDAN	662	3,925,18	5,950	5,147	5,469
2	OKOBOJI	330	1+884-10	2,966	2,567	2,726
	OLDS	189	1,048.55	1,699	1,469	1,561
12	OLDIUWN	27	224.26	242	210	223
21		703	3,510.23	6,319	5,467	5,807
		291	1,671,00	2,615	2,263	2+405
12	ONETUA	76	420.53	683	590	627
7	ONSLOW	269	1,368,17	2,418	2,092	2+222
		I	l l			<u> </u>

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS

AMONG CITIES AND TOWNS

	NAME	NAME 1960 1960				DISTRIBUTION OF ESTIMATED ISSUE ROAD USE TAX FUNDS		
3 904	OF CITY OR TOWN	POPULATION	ROAD USE TAX	ICO % ON POPULATION	IOOT. ON ASE NEED	405 ON NEED		
9	ORCHARD	116	639.19	1,042	902	959		
9	ORIENT	341	2,394.37	3,065	2,652	2,811		
9	ORLEANS	280	1,777,54	2,516	2,177	2,312		
9	OSSIAN	827	4,508.38	7,433	6,431	6,832		
19	OSTERDOCK	45	285.93	404	350	372		
9	отно	593	3,140,13	5,330	4,611	4 • 898		
2	010	221	1,693.42	1,986	1,719	1,826		
2	OTTOSEN	92	712+10	827	715	760		
121	OWASA	104	560•72	935	809	859		
12	OXFORD	633	3,044.78	5,689	4,922	5,229		
[2]	OXFORD JCT	725	3,717.70	6,516	5,638	5,989		
2	OYENS	114	532.65	1,024	887	942		
19	PACIFIC JCT	560	3,084.07	5,033	4,354	4,629		
2	PACKWOOD	215	1,183,14	1,933	1,672	1,777		
2	PALMER	271	1,659.75	2,435	2,107	2,238		
2	PALO	387	1,598.08	3,478	3,010	3,198		
121	PANAMA	257	1,289,68	2,310	1,998	2,123		
12	PANORAMA PARK	140	667.24	1,258	1,089	1,156		
2	PARNELL	200	1,155,12	1,798	1,555	1,652		
2	PATON	370	2,265.40	3,325	2,877	3+056		
12 1	PATTERSON	157	745•75	1,411	1,221	1+297		
12	PEOSTA	50	336•42	450	389	413		
2	PERSIA	322	2,091.53	2+894	2+504	2,660		
2	PETERSON	565	3,302.75	5+078	4,393	4,668		
9	PIERSON	425	2,540.16	3+819	3,305	3,510		
12	PILOT MOUND	196	1,379.38	1,762	1,524	1+619		
19	PIONEER	448	465.38	4,026	3,484	3,701		
2	PISGAH	343	1,833.61	3,083	2,667	2,833		
12	PLAINFIELD	445	2,170.05	3,999	3,460	3,677		
12	PLAIN VIEW	37	235.45	333	288	305		
19 1	PLANO	87	594.32	782	677	719		
12	PLEASANT HILL	397	2,242.96	3,568	3,087	3+280		
18 [PLEASANTON	103	728.91	926	801	850		
1		ł	1					

COMPARISON OF METHODS

For

DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

4 2 2 2 2	NAME	1960	1960	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS		
U H H H H	CITY OR TOWN	POPULATION	APPORTIONMENT	IOO % ON POPULATION	IOOT. ON ASE NEED	COLON NEED AND 400 ON POR
9	PLEASANT PLAIN	147	829.85	1,321	1,143	1,219
9	PLEASANTVILLE	1,025	5,007.41	9,212	7,970	8,466
9	PLOVER	182	1,362,54	1,636	1,416	1,504
9	PLYMOUTH	422	2,214.91	3,792	3,281	3,486
2	POLK CITY	567	1,884.10	5,096	4,409	4,684
9	POMEROY	816	4,867.23	7,334	6,345	6,741
9	POPEJOY	190	1+127-07	1,708	1,478	1,569
2	PORTSMOUTH	232	1,676.59	2,085	1,804	1,91
2	PRAIRIEBURG	226	1,177.54	2,031	1,757	1,866
19	PRAIRIE CITY	943	4,676.58	8,475	7,333	7,790
2	PRESCOTT	331	2,085,96	2,975	2,574	2,734
2	PRESTON	819	3,835.50	7,361	6,369	6,766
2	PRINCETON	580	2,775.65	5,213	4,510	4,792
2	PROMISE CITY	161	1,222.40	1,447	1,252	1,329
19	PROTIVIN	302	1,586.90	2,714	2,348	2,495
9	PULASKI	299	2,136.38	2,687	2,325	2,470
2	QUASQUETON	373	2,097.17	3,352	2,901	3,081
9	QUIMBY	369	2,231.70	3,317	2,869	3,049
9	RADCLIFFE	615	3.577.51	5,527	4,783	5,079
9	RAKE	328	1,968,20	2,948	2,550	2,710
9	RALSTON	143	930-82	1,285	1,112	1,182
9	RANDALIA	114	740.17	1,025	887	942
9	RANDALL	201	1,132,68	1,806	1,563	1,659
9	RANDOLPH	257	1,654,18	2,310	1,998	2,123
9	RATHBUN	203	1,284.06	1,824	1,579	1,678
9	RAYMOND	378	1,682.15	3,398	2,939	3,122
9	READLYN	547	2,624.27	4,916	4,253	4.518
9	REASNOR	224	1,272.81	2,013	1.742	1.850
9	REDDING	129	1,121,47	1,159	1,004	1,066
9	REDFIELD	966	5,001.81	8,682	7,511	7,980
9	REMBRANDT	265	1,659.75	2,382	2,061	2.190
9	REMSEN	1,338	7,177.47	12.025	10.404	11.052
9	RENWICK	477	2,657.88	4,287	3,710	3.941
		ł	I .			

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

4

8	NAME	1960	1960	DISTRIBUTION OF ESTIMATED IN		ATED IDE
POP. CR	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOO %. ON ASE NEED	O LON NEED AND 40 ON POR
9	RHODES	358	2,069.08	3,218	2,783	2,957
9	RICEVILLE	898	5,394.32	8,071	6,983	7,418
9	RICHLAND	546	3,313.98	4,907	4,246	4,510
9	RICKETTS	133	930.82	1,195	1,034	1,099
9	RIDGEWAY	267	1,721.43	2,400	2+0.77	2,206
9	RIDOTTO	6		54	46	49
9	RINARD	99	644.82	889	770	817
9	RINGSTED	559	3,241.09	5,024	4,347	4,619
9.	RIPPEY	331	1,984,99	2,975	2,574	2,734
9	RIVERDALE	477	1,256.01	4,287	3,709	3,940
9	RIVERSIDE	656	3,538.29	5,896	5,101	5,419
9	RIVERTON	399	2 + 646 - 67	3,586	3,103	3,296
9	ROBINS	426	1,525.17	3,829	3,312	3,519
9	ROCK FALLS	156	779.40	1,402	1,213	1,289
9	ROCKFORD	941	5,489,63	8,457	7,318	7,773
9	ROCKWELL	772	4,222.40	6,938	6,003	6,378
9	RODMAN	144	689.69	1,295	1,120	1,189
9	RODNEY	94	712.10	844	731	776
9	ROLAND	748	3,852.29	6,723	5,816	6,179
9	ROLFE	819	5,590,57	7,361	6,369	6,766
9	ROME	117	751.34	1,051	910	966
9	ROSE HILL	223	1,362.56	2,005	1,734	1,842
9	ROSSIE	102	628.00	916	793	843
9	ROWAN	273	1,704.62	2+454	2+123	2,255
9	ROWLEY	234	1,396.21	2,103	1,819	1,933
9	ROYAL	475	2,775.63	4,269	3,694	3,924
9	RUDD	436	2,231.71	3,919	3,390	3,601
9	RUNNELLS	322	1,721.13	2,894	2,504	2,660
9	RUSSELL	577	3,173.81	5,185	4,487	4,767
9	RUTHVEN	712	4,867.23	6,399	5,537	5,881
9	RUTLAND	221	1,261.63	1,987	1,718	1,827
9	RYAN	347	2,029.86	3,118	2,698	2,866
9	SABULA	894	4,979.41	8,035	6,952	7,385
					······································	_ + •

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS

AMONG CITIES AND TOWNS

202	NAME	1960	1980	DISTRIBUTION OF ESTIMATED 1991 ROAD USE TAX FUNDS			
POP. G	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOO % ON ASE NEED	GOLON NEED	
9	SAGEVILLE	110	661.60	989	85	908	
9	ST ANSGAR	1,014	5,500.86	9,113	7,88	8,377	
9	ST ANTHONY	130	981.26	1,168	1,01	1+07B	
9	ST CHARLES	355	1,788,79	3,191	2,76) 2,93B	
9	ST LUCAS	211	885•93	1,896	1,64	1+748	
9	ST MARYS	94	499.05	844	73	777	
9	ST OLAF	169	885.92	1,519	1,31	1,395	
9	ST PAUL	128	633.64	1,151	99!	1+058	
9	SALEM	44	2,652.28	3,972	3,43	3,65	
9	SALIX	394	1,889.61	3,54	3,064	3,255	
12	SANDYVILLE	11:	515.83	1,034	894	950	
9	SCARVILLE	10	588•76	943	81	868	
9	SCHALLER	896	4,715,81	8,053	6,96	7+40	
9	SCHLESWIG	78	4,211,17	7,059	6,10	6,48	
9	SCRANTON	865	4,996.17	7,774	6,720	7,14	
9	SEARSBORO	165	1,026.10	1,483	1,28	1,36	
9	SERGEANT BLUFF	81	3,190.60	7,307	6,32	6,71	
9	SHAMBAUGH	206	1,407,45	1,852	1,60	1+70	
9	SHANNON CITY	12	958.79	1,141	98	1,05	
9	SHARPSBURG	130	824.25	1,168	1,01	1,07	
19	SHELBY	53	3,319.55	4,791	4,14	4+40	
9	SHELDAHL	279	2 1,183.11	2,507	2,170	2,30	
19	SHELLSBURG	625	5 3,543,84	5,617	4,86	5,16	
9	SHERRILL	174	908+36	1,564	1,35:	1,43	
9	SILVER CITY	28.	1,743.88	2,526	2,18	2,32	
9	SLATER	71	3,269.12	6,444	5,57	5+922	
9	SLOAN	704	3,667.21	6,327	5,47	5,81	
9	SMITHLAND	349	2,091.52	3,137	2,71	2,88	
9	SOLDIER	284	1,811.16	2,552	2,20	2+34	
9	SOLON	604	2,955.06	5,429	4,69	4,989	
9	SOMERS	201	3 1,216.78	1,824	1,57	1,67	
9	SOUTH ENGLISH	51.	1,390.62	1,950	1,68	1,79	
9	SPILLVILLE	389	2.035.46	3,496	3,02	4 3,214	
	1	ł	1	[

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS

.

AMONG CITIES AND TOWNS

SCP	NAME	1960	iseo	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS				
POP CI	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IOO % ON POPULATION	IOO% ON ASE NEED	BOLON NEED AND 400 ON POR		
9	SPRAGUEVILLE	100	644.82	899	778	825		
9	SPRINGBROOK	139	611.20	1,249	1,081	1,149		
9	SPRING HILL	111	482+20	998	863	917		
9	SPRINGVILLE	785	3,813.04	7,055	6,104	6,484		
9	STACYVILLE	588	3,050.41	5,285	4,573	4,858		
9	STANHOPE	461	2+355+09	4,143	3,585	3,808		
19	STANLEY	156	885+92	1,402	1,213	1,289		
2	STANTON	514	3,196,22	4,620	3,997	4,246		
9	STANWOOD	598	3,067,22	5,374	4,650	4,940		
9	STEAMBOAT ROCK	426	2+214+91	3,829	3,312	3,518		
9	STOCKPORT	342	1,940,14	3,074	S*660	2 • 825		
9	STOCKTON	164	925•18	1,474	· 1,275	1,359		
9	STOUT	145	756.97	1,303	1,127	1,198		
9	STRATFORD	703	3,773.75	6,318	5,467	5,808		
19	STRUBLE	74	510.23	665	575	611		
9	SULLY	508	2,534,53	4,566	3,951	4+196		
9	SUPERIOR	190	1,345.75	1,707	1+477	1,569		
9	SUTHERLAND	883	4,682,15	7,936	6,867	7,294		
9	SWALEDALE	217	1,149.49	1,951	1,687	1,793		
19	SWAN	168	1,087.81	1,509	1,306	1,388		
9	SWEA CITY	805	4,872,84	7,235	6,260	6,649		
9	SWISHER	271	1,149,49	2,436	2,108	2,240		
19	TABOR	909	4+872+85	8,170	7,068	7,508		
9	TEMPLETON	354	2,158.84	3,181	2,753	2,925		
9	TENNANT	95	532.65	854	739	785		
9	TERRIL	382	2,383.13	3,433	2,970	3,155		
9	THAYER	101	852+28	908	785	834		
9	THOMPSON	689	3,913,98	6,192	5,358	5,692		
9	THOR	234	1,519,59	2,103	1,820	1,933		
9	THORNBURG	101	773+78	908	785	834		
9	THORNTON	449	2,472.87	4,035	3,492	3,709		
9	THURMAN	268	1,592.45	2,409	2,083	2,214		
9	TIFFIN	311	1,435.45	2,795	2,419	2,569		
1			1 .					

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

	NAME	1960	1860	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS				
000	CITY OR TOWN	POPULATION	APPORTIONMENT	IOO % ON POPULATION	IOO % ON AJZ NEED	GOSON NEED		
9	WALNUT	777	4,979.39	6,983	6,042	6,419		
9	WASHTA	310	2+259+75	2,786	2,410	2,560		
9	WATERVILLE	184	1,115,83	1,654	1,431	1,520		
9	WAUCOMA	364	2,158.84	3,272	2,831	3,007		
9	WAUKEE	687	2,809.30	6,174	5,342	5,675		
9	WAYLAND	597	3,364.41	5,365	4,642	4.932		
9	WEBB	236	1,317.66	2,121	1,835	1,949		
9	WEBSTER	137	762.61	1,232	1,066	1,132		
9	WELDON	202	1+284+06	1,815	1,570	1,669		
9	WELLSBURG	827	4,171.93	7,433	6,431	6,832		
9	WELTON	88	521.47	791	685	726		
9	WESLEY	514	2,854.16	4,619	3,996	4,246		
9	WEST BEND	910	4,328.91	8,179	7,077	7,517		
9	WEST BRANCH	1,053	4,312.08	9,464	8,188	8,699		
9	WEST CHESTER	253	1+222+43	2,274	1,967	2+089		
9	WESTFIELD	187	964+44	1,680	1,454	1,546		
9	WESTGATE	214	1,267.28	1,924	1,664	.1,768		
9	WEST OKOBOJI	171	885•93	1,536	1,330	1,412		
9	WESTPHALIA	131	897.13	1,178	1,019	1,083		
9	WEST POINT	758	3+712+07	6,812	5,894	6,261		
9	WESTSIDE	367	2+203+68	3,299	2,854	3+031		
9	WHEATLAND	643	3,184,97	5,779	5,000	5,312		
9	WHITING	595	3,717.70	5,347	4,627	4,915		
9	WHITTEMORE	741	3,801,78	6,660	5,762	6,121		
9	WHITTEN	184	975+66	1,654	1,431	1,520		
9	WILLEY	80	527.05	719	622	660		
9	WILLIAMS	490	2,910.21	4,404	3,810	4,049		
9	WILLIAMSBURG	1,342	6,633,56	12,061	10,436	11,086		
9	WILLIAMSON	262	1,648.59	2,355	2,037	2,163		
9	WINFIELD	862	4,979.39	7,747	6,703	7+121		
9	WINTHROP	649	3,386,84	5,833	5,047	5,361		
9	WIOTA	195	1,272,81	1,752	1,516	1,611		
9	WODEN	283	1,525,17	2,544	2,201	2,338		

۲

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX PUNDS AMONG CITIES AND TOWNS

.

20	NAME	1860	1960	DISTRIBUTION OF ESTIMATED 1981 ROAD USE TAX FUNDS				
3 30 40	OF CITY OR TOWN	POPULATION	ROAD USE TAX	IQO % ON POPULATION	IOO% ON ASE NEED	BOLON NEED AND AOLON POR		
9	TINGLEY	278	1,867.19	2,499	2,162	2,29		
9	TITONKA	647	3,302.75	5,815	5,031	5,34		
91	TORONTO	144	925.20	1+294	1,120	1+19		
9 [TREYNOR	368	1,384,98	3,307	2,861	3,04		
9	TRUESDALE	153	885.92	1,375	1,190	1,26		
9	TRURO	338	1,984.99	3,038	2,628	2,79		
9	TURIN	163	897.19	1,465	1,268	1,34		
9	UDELL	76	538+29	683	591	62		
9	UNDERWOOD	337	1,558.83	3,029	2,620	2,78		
9	UNION	534	2,747.58	. 4,799	4,153	4,41		
9]	UNIONVILLE	185	1,143.89	1,663	1,438	- 1,52		
9	UNIVERSITY HTS	841	2,500,90	7,558	6,540	6,94		
9	UNIVERSITY PARK	569	2,562.59	5,114	4,425	4,70		
9	URBANA	544	2,321.42	4,889	4,230	4,49		
9	UTE	511	3,156,94	4,593	3,974	4,22		
9 (VAIL	473	2,983.13	4,251	3.678	3.90		
9	VALERIA	76	319.54	683	591	62		
9	VAN HORNE	554	2,865.36	4,979	4,308	4.57		
9	VAN METER	385	2.041.07	3.460	2.992	3,18		
9	VAN WERT	253	1.783.11	2.274	1.968	2.08		
9	VARINA	162	807.42	1.456	1.259	1.33		
9	VENTURA	510	1.045.78	4.584	3.966	4.21		
9	VICTOR	870	4.155.03	7 819	6.765	7,18		
9	VINCENT	173	1.082.19	1,555	1,346	1.42		
9	VINING	122	628.00	1,096	040	1.00		
9	VOLGA CITY	361	2,371,92	3,745	2.907	2.09		
9	WADENA	275	1.771.80	2.471	2,007	2,70		
9	WAHPETON	117	712.10	1,052	2,130	2,21		
9	WALCOTT	664	2.691.56	5,968	5.163	90 5.49		
9	WALFORD	264	1.104.63	2,372	2,052	2,40		
9 Í	WALKER	584	3,070 44	£ 7712 6.3/0	L 29002			
9	WALLINGEORD	228	1,294 04	21249	49741	4,82		
<u>9</u>	WALL LAKE	812	4,222 20	7.200		1+88		
	MALL LANE	812	4 • 222 • 38	/,298	6,315			

COMPARISON OF METHODS For DISTRIBUTION OF ROAD USE TAX FUNDS AMONG CITIES AND TOWNS

	NAME	1960	1960	DISTRIBUTION OF ESTIMATED ISSI ROAD USE TAX FUNDS				
POP G	CITY OR TOWN	POPULATION	APPORTIONMENT	ICO % ON POPULATION	IOO7. ON ASE NEED	BOSON NEED AND 402 ON POS		
9	WOODBURN	202	1,429.88	1.815	1.570	1.669		
9	WOODWARD	967	5,091.50	8,691	7.520	7,988		
9	WOOLSTOCK	269	1,429.88	2.418	2.092	2,222		
9	WORTHINGTON	360	1,889.67	3,235	2.799	2.974		
9	WYOMING	797	4,059.76	7.163	6.198	6.584		
9	YALE	260	1,642.93	2,337	2.022	2.148		
9	YETTER	85	678.46	764	661	702		
9	YORKTOWN	150	818.64	1,348	1.166	1.238		
9	ZEARING	528	2,882.23	4,745	4,106	4,363		
9	ZWINGLE	110	740.16	989	855	908		
9	POP GROUP TOTAL	291+431	1,558,602.70	2,619,233	2,266,201	2,407,413		
	STATE TOTAL	1,910,301	9,544,848,27	17,168,813	17,168,813	17,168,813		

•

.

STATE OF IOWA Present Schedule of Registration Fees for Trucks, Busses and Truck Tractors

Table 1

•

.

Classified by Gross Weight of Vehicle (1958 Distribution)

	Gговв (Роч	Weight nds)			Regist	ration Fe	es		Numbe	r Register	ed	· ·	Fees Produced		
GLOBE			Tru	cks and B	usees	Tr	uck Tract	ors							
weight	5 percent overload	25 parcent overload	Annual Yce	Average Pee	Ave. fee per ton	Annual Pee	Average Pee	Ave. fee per ton	Trucks & Busses	Truck Tractors	Total	Trucks & Busses	Truck Tractors	Total	
3	6,300	7,500	25.00	23.98	7.99	-	-	-	137,631	-	137,631	3,300,535.20	_	3,300,535,20	
5	10,500	12,500	40.00	38.37	7.67	 – ,	-	-	30,615	-	30,615	1,174,687.51	_	1,174,687.51	
6	12,600	15,000	70.00	67.15	11.19	40.00	38.37	6.40	6,448	107	6,555	432,963.38	4, 105. 55	437,068.93	
7	14,700	17,500	95.00	91.13	13.02	65,00	62.35	8.91	10,433	62	10,495	950,738.12	3,865.74	954,603.86	
8	16,800	20,000	120.00	115.11	14.39	90.00	86.33	10.79	6,899	616	7,515	794,137.10	53,180.36	847,317-46	
9	18,900	22,500	155.00	148.68	16.52	125.00	119.91	13.32	6,846	141	6,987	1,017,080.25	16,906.64	1,034,786.89	
10	21,000	25,000	190.00	182.26	18.23	160.00	153.48	15.35	5,851	262	6.113	1.066.379.51	40.211.42	1.106.590.93	
11	23,100	27,300	225.00	215.83	19.62	195.00	187.05	17.00	4,061	218	4,279	876,483,21	40.777.37	917.260.58	
12	25,200	30,000	265.00	254.20	21.19	235.00	225.42	18.79	2,664	271	2,935	677,186,34	61.089.31	738.275.65	
13	27,300	32,500	290.00	278.18	21.40	260.00	249.40	19.18	688	143	831	191, 387, 92	35.664.61	227.052.53	
14	29,400	35,000	315.00	302.16	21.58	285.00	273.38	19.53	458	149	607	138,389.81	40,734.20	179,124.01	
15	31,500	37,500	340,00	326.14	21.74	310.00	297.36	19.82	289	120	409	94,255.10	35,683.79	129.938.89	
16	33,600	40,000	365.00	350.12	21.88	335.00	321.35	20.03	224	201	42.5	78,427.61	64,590.55	143.018.16	
17	35,700	42,500	390.00	374.10	22.00	360.00	345.33	20.31	179	291	470	66,964.67	100,490.17	167,454.84	
18	37,800	45,000	415.00	398.09	22.12	385.00	369.31	20.52	297	240	537	118,231.35	88,633.94	206,865.29	
19	39,900	47,500	440.00	422.09	22.22	410.00	393.29	20.70	436	396	832	184,020.95	155,742.50	339,763.45	
20	42,000	50,000	465.00	446.05	22.30	435.00	417.27	20.86	387	476	863	172,620.36	198,620.61	371.240.97	
21	44,100	52,500	490.00	470.03	22.38	460.00	441.25	21.01	305	250	555	143,358.69	110,312.01	253,671.50	
22	46,200	55,000	515.00	494.01	22.46	485.00	465.23	21.15	72	335	407	35,568.69	155,852.01	191,421.50	
23	48,300	57,500	540.00	517.99	22.52	510.00	489.21	21.27	28	300	328	14,503.74	146,763.99	161,267.73	
24	50,400	60,000	565.00	541.97	22.58	535.00	513.19	21.38	6	246	252	3,251.83	126,245.81	129,497.64	
25	52,500	62,500	-	-	-	560.00	537.18	21.49	-	400	400	-	214,870.16	214,870.16	
26	54,600	65,000	-			585.00	561.16	21.58	-	430	430	-	241,297.27	241,297.27	
27	56,700	67,500	-	- 1	· -	610.00	585.14	21.67	-	1312	1312		767,700.40	767,700.40	
28	58,800	70,000	-	1 - 1	-	635.00	609.12	21.75	-	1126	1126	-	685,867.48	685,867.48	
29	60,900	72,500	-	-	-	660.00	633.10	21.83	-	468	468	-	296,290.61	296,290.61	
30	63,000	75,000	-	- 1	-	685.00	657.08	21.90	-	128	128	-	84,106,32	84,106.32	
31	65,100	77,500	-	-	-	710.00	681.06	21.97	-	184	184	-	125,315.35	125,315.35	
32	67,200	80,000	-	-	-	735.00	705.04	22.03	-	392	392	-	276,376.75	276,376.75	
33	69,300	82,500	-	-	-	760.00	729.02	22.09	- 1	239	239	-	174,236.68	174,236.68	
34	_ 71,400	85,000	-	-	-	785.00	753.00	22.15	-	480	480	-	361,442.31	361,442.31	
35	73,500	87,500	-		-	810.00	776.99	22.20	-	40	40	-	31,079.43	31,079.43	
36	75,600	90,000	-	-	~	835.00	800.97	22.25	-	26	26	-	20,825.14	20,825.14	
37	77,700	92,500	-	-	-	860.00	824.95	22.30	-	l I	[1	-	824.95	824.95	
38	79,800	95,000	-	-	-	885.00	-	-	-	-	- 1	-	-	-	
39	81,900	97,500	-	-	-	910.00	-	-	-	-	-	-	-	-	
40	84,000	100,000	-	-	-	935.00	896.89	22.42	-	4	4	-	3,587.56	3,587.56	
41	86,100	102,500	-	-	-	960.00	! -	- 1	-	- 1	- 1		-	- 1	
42	88,200	105,000	-	-	-	985.00	-	1 -	- 1	- 1	-	- 1	-	- (
43	90,300	107,500	-	-	-	1010.00	968.84	22.53	-	2	2	-	1,937.67	1,937.67	
Total	-	-	-	53.68	-	-	473.87		214,817	10,056	224,873	11,531,971.34	4,765,230.26	16,297,201,60	

	E) Ei	, , , , , , , ,			92939 XCCCC					
	1		88581 93555	2588F	TTPR SSIE	49999 25536		† 8 1161	,	
	1			11711 81911	14774 55599	5255 9525		• • • • •		
	10	• • \$ #	1 97669 1 97669		62323					
	,				3928	¥				
1	12				8883	¥				
	i				,	*	,			
	<u></u>			*\$		59			• • • • •	•
1]1			· · · ·	88888 36862	88 5 x				
				• • • • *	*****	*****				2
	12				22522 53525	¥ , , , , ,			• • • • •	.
2	11		• • • • • •		88888 11111	\$			••••	· •
	i			11000		•	• • • • •			
	12			\$5:538 \$9351	52535	\$3903 \$\$560		• • • •		
10 1 M	12			84888 83535	38888 22222	88888 89355				
	<u>i</u>			¥sppa	** ****					
	1	¦	· · · · · · · · · · · · · · · · · · ·		tiota Litet	*79		• • • •		
1	1		## 문헌	58888	88888 21117	2 5 2 7 7 2	.	· · · · · ·		
_					* * * * * *	****				2 7
	j,		****	16181	57775	988. 995			 	· •
	Ī		8688	83883 11183	22553 22553	888	••••			
_			, <u>9</u> 238	\$\$53*						i i
2	1:		45513 19258	11111 11111	16638 16638	533 533				- 1
]1		18363 1111	11583 11111	88888 13115	838 832				
	i	r	53653	****	*****					5
	į			55959 22223	19778 91199	17		•		
2	1:	. 888	\$\$\$\$\$ \$2721	88888 88888 88888	88888 71723	89 93	• • • • •			· •
	<i>i</i>	់ គឺធំភ្ន	XEZ32	28233	••••	** • • •		• • • • •		345
	Puri Suna	2242 1888	5858 3 9223 2	¥2253 ¥2353	52239 52239	12263 12142	****** ******		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
THE PASSAGE NEW			1717. 1717. 1717.	87272 1939 J	19199 33333	26222 38323	REEEE FR853	285	R. R.	
1	ts I	24241 22221	74997 83253		83455 18853					- i
ſ	121	86538 78433	88888	85883	11233 88838					
-	ā	* • • • •	****	*****	*****		22222	34524	\$ = 7 =	torial

•

•

PARTE OF THE OF

.

STATE OF JOWA Present Schedule of Registration Fees for Single Unit Trucks and Busses and Single Unit Truck-Trailer Combinations Classified by Gross Weight of Vehicle or Combination

	Rumb	er Registe	red	Registration Pees			Re	egistration	n Fees	Registration		
	(Tru	cks & Buss	es) 7	rucks & Busses without Trailers			IS (Tr	rucks & Tra	ailers)	Pees Producad		
Gross Wt.	Trucks & Busses Without Trailers	Trucks with Trailers	Total	Annual Pee	Average Pee	Ave. fee per ton	Annual Pee	Average Fee	Ave. fee per ton	Trucks & Busses Without Trailers	Trucks with Trailers	Total
3 5 6 7 8	137,631 28,705 5,859 9,958 6,454 6,454	- - 1,058 325 833	137,631 28,705 5,859 11,016 6,779 7,253	25.00 40.00 70.00 95.00 120.00	23.98 38.37 67.15 91.13 115.11 148.68	7.99 7.67 11.19 13.02 14.39 16.52	- 	- - 56.88 85.66 79.45	- - 8.13 10.71 8.83	3,300,535.20 1,101,410.85 393,478.84 907,581.08 743,008.68 954,639.82	- - - 60,179.04 27,839.50 66.181.34	3,300,535.20 1,101,410.85 393,478.84 967,760.12 770,848.18 1,020,821.16
10	5,488	425	5,913	190.00	182.26	18.23	123.34	117.50	11.75	1,000,362.66	49,936.83	1,050,299.49
11	3,811	513	4,324	225.00	215.83	19.62	136.87	130.35	11.85	822,626.38	66,868.39	889,494.77
12	2,498	374	2,872	265.00	254.20	21.18	178.45	170.31	14.19	635,067.45	63,696.91	698,764.36
13	643	379	1,022	290.00	278.18	21.40	183.63	171.39	13.18	178,891.10	64,957.00	243,848.10
14	422	257	679	315.00	302.16	21.58	226.38	215.80	15.41	127,526.75	55,551.66	183,078.41
15	262	206	468	340.00	326.14	21.74	200.15	190.62	12.71	85,458.88	39,267.34	124,726.22
16	203	131	334	365.00	350.12	21.88	248.55	240.97	15.06	71,082.85	31,567.17	102,650.02
17	162	84	246	390.00	374.10	22.00	247.62	236.08	13.89	60,611.43	19,830.67	80,442.10
18 -	283	63	346	415.00	398.09	22.12	281.75	269.00	14.94	112,672.42	16,947.30	129,619.72
19	423	48	471	440.00	422.09	22.22	290.10	276.73	14.56	178,565.39	13,283.03	191,848.42
20	378	37	415	465.00	446.05	22.30	327.30	312.45	15.62	168,627.04	11,560.83	180,187.87
21	299	24	323	490.00	470.03	22.38	347.08	331.40	15.78	140,555.75	7,953.60	148,509.35
22	69	18	87	515.00	494.01	22.46	385.28	368.11	16.73	34,090.75	6,625.92	40,716.67
23	26	13	39	540.00	517.99	22.52	410.38	392.22	17.05	13,469.34	5,098.92	18,568.26
24	5	10	15	565.00	541.97	22.58	412.00	393.61	16.40	2,710,17	3,934.77	6,644.94
25 26 27 28 29	0 0 0 0	8 6 4 1 1	8 6 4 1 1		- - - -		413.75 478.33 510.00 475.00 500.00	395.52 457.25 487.69 453.61 477.61	15.82 17.59 18.06 16.20 16.47		3,164.16 2,743.52 1,950.76 453.61 477.61	3,164.16 2,743.52 1,950.76 453.61 477.61
Total	209,999	4,818	214,817	-	-	-	-	-	-	11,032,972.83	620,069 .88	11,653,042.71

Table 3

.

· (

ſ

ſ

3	lesen	Retranstion ross for
	Truck-Tractors and 7	Truck-Tractor Semitrailer
Comb	inations Classified h	ov Gross Meight of Combinetion

Table 4

1

1

~~ J

1.

Gross Weight	ן (ד:	Registration ruck-Tractor	Pee only)	K (Truck-Tr	egistration : ractor and So 1/	Pee emitrailer)		(Truc 'ractor) (Semit - (ar Combs.)	
	Annual Fee	Average Pee	Ave. Pee Per Ton	Annual Pee	Average Pos	Ave. Pee Per Ton	Mamber Registered	Pess Produced	
6	40.00	38.37	6.40	71.98	68.04	21.34	107	7 202 38	
7	65.00	62.35	8.91	96.98	92.02	13.15	62	5 706 80	
8	90.00	86.33	10.79	121.98	116.00	14.34	616	7) 460 38	
9	125.00	119.91	13.32	156.98	149.58	16.62	141	21 002 20	
10	160.00	153.48	15.35	191.98	183.15	18.32	262	47,990.14	
11	195.00	187.05	17.00	226.98	216.72	10 70	310	42 242 24	
12	235.00	225.42	18.79	266.98	255.09	23.26	271	4/,249.74	
13	260.00	249.40	19.18	334.70	318.70	94 S1	142	69,135.23	
34	285.00	273.3B	19.53	359.70	342.68	74 49	140	45,578.34	
15	310.00	297.36	19.82	384.70	366.66	24.44	120	51,063.89 44.003.01	
16	335.00	321.35	20.08	409.70	390.65	24.41	202	78, 525.24	
17	360.00	345.33	31.35	434.70	414.63	24.39	291	120,664.27	
18	385.00	369.31	20.52	459.70	438.61	24.37	240	105,272.37	
19	410.00	393.29	20.70	484.70	462.59	24.35	396	183, 195.91	
20	435.00	417.27	20.86	509.70	496.57	24.33	476	231,620.16	
21	460.00	441.23	21.01	534.70	510.55	24.31	250	127 644 51	
22	485.00	465.23	21.15	559.70	534.53	24.30	135	179 077 25	
23	510.00	489.21	21,27	584.70	559.51	24.28	100	167 562 02	
24	535.00	513.19	21.38	609.70	382.49	24.27	246	143 300 20	
25	560.00	537.18	21.49	634.70	606.48	24.26	400	242,600.88	
26	585.00	561.16	21 59	659 70	#10 A5	34.35			
27	610.00	595.14	21 67	694 70	630.40	24.25	4.10	271,107.79	
28	635.00	609.12	21 75	700 70	470 47	24,24	1,312	858,657.15	
29	660.00	633.10	21.83	734 70	707 40	24-27	1,120	763,929.45	
30	685.00	657.08	21.90	759.70	726.38	24.21	129	328,735.55	
								91,900.19	
31	710.00	681.06	21.97	784.70	750.36	24.20	184	138,071.48	
32	735.00	705.04	22.03	809.70	774.34	24.20	392	303, 552.85	
33	760.00	729.02	22.09	B34.70	798.32	24.19	239	190,805.78	
34	785.00	753.00	22.15	859.70	822.30	24.18	480	394,719.17	
35	810.00	776,99	22.20	884.70	846.29	24.18	40	33,852.50	
36	835.00	800.97	22.25	909.70	870.27	24.17	26	22,627.64	
37	860.00	824.95	22.30	934.70	894.25	24.17	1	894.28	
38	885.00	-	-	- '	-	-	-	-	
39	910.00	- 1	-	- 1	-	-	-		
40	935.00	896.89	22.42	1009.70	996.19	24.90	4	3,864.87	
41	960.00] -	-	-	- 1	-	_		
42	985.00	968.84	23.07	1059.70	1038.14	24.72	2	2.076.32	
43	1010.00	-		-	} <u>C</u>	-	-	-	
Total	-	_	-	-	-		10,056	5,395,909.14	

1/ There are 1,789 semitrailers registered for gross weights of 12 tons (r less whereas there are 1.677truck-tractors registered for gross weights of 12 tons or less maying 1.06679 semitrailers per trucktractor. There are also 10,436 semitrailars registered for gross reights exceeding 12 tons whereas there are 8,379 truck tractors registered for gross weights excending 12 tons making 1,24549 semitrailers per truck-tractor. This excess number is reflected in the annual and average registration fees paid per unit combination.

STATE OF IOWA

Summary of Annual Registration Fees, Average Registration Fees and Average Registration Fees Par Ton of Registered Gross Weight for Trucks and Busses, Truck-Trailer Combinations and Truck-Tractor Semitrailer Combinations classified by Gross Weight of Combination

Annual Registration Pee Average Registration Pees Average Registration Fees Per Ton L GTORE Trucks & Truck-Tractor Trucks & Truck & Truck & Truck-Tractor Trucks & Truck & Truck-Tracto Weight RUBBES Trailer Semitrailer RUSBAS Trailer Semitrailere BURGRA Trailer Semitrailer (No Trailers) Combinations (No Trailers) Combinations Combinations Combinations (No Trailers) Combinations Combinations 3 25.00 23.98 7.99 _ _ _ ------5 40.00 _ 38.37 7.67 _ 71.98 6 70.00 67.15 68.04 11.19 11.34 7 95.00 60.00 96.98 91.13 56 88 92 02 13.02 8.13 13.15 8 120.00 90.00 121.98 115.11 85.66 116.00 14.39 10.71 14.54 9 155.00 83.77 156.98 148 68 149 58 79 45 16.52 6.83 16.62 110 190.00 123.34 191.98 182.26 117.50 183.15 18.23 11.75 18.32 111 225.00 215.83 216.72 136.87 276.98 130.35 19.62 11.85 19.70 255.09 112 265.00 178.45 266.98 254 20 170.31 21.18 14.19 21.26 13 290.00 318.70 183.63 334.70 278.16 170.39 21.40 13.16 24.51 114 315.00 226.38 359.70 302 16 215.80 342.68 21.58 15.41 24.48 115 340.00 200.15 384.70 326.14 190.62 366.66 21.74 12.71 24.44 16 365.00 248.55 409.70 350 12 240.97 390.65 21.98 15.06 24.41 117 390.00 247.62 434.70 374.10 236.08 414.63 22.00 13.89 24.39 118 415.00 281.75 459.70 398.09 269.00 438.61 22.12 14.94 24.37 119 440.00 290.10 484.70 422.09 276.73 462.59 22.22 14.56 24.35 486.57 22.30 465.00 509.70 446.05 312.45 15.62 24.33 20 327.30 21 490.00 347.08 534.70 470.03 331.40 510.55 22.38 15.78 24.31 22.46 515.00 559.70 494.01 36B.11 534.53 16.73 22 385.28 24.30 23 540.00 410.38 584.70 517.99 392.22 558.51 22.52 17.05 24.28 24 565.00 412.00 609.70 541.97 393.61 582.49 22.58 16.40 24.27 605.48 15.82 24.26 25 413.75 634.20 395.52 26 478.33 659.70 457.25 630.46 17.59 24.25 654.44 27 510.00 684.70 487.69 ----18.06 24.24 _ _ 28 -475.00 709.70 _ 453.61 678.42 16.20 24.26 734.70 477.61 702.40 16.47 24.22 29 500.00 -726.38 759.70 24.21 _ 30 _ 750.36 24.20 131 -784.70 ---774.36 809.70 -24.20 32 -_ -_ _ 798.32 24.19 33 _ _ 834.70 _ 822.30 24.18 34 859.70 --884.70 846.29 24.19 35 _ _ 870.27 24.17 36 909.70 _ ~ _ _ 894.25 24.17 934.70 37 -_ _ -38 _ 39 ---996.19 24.90 1009.70 -~ 40 -41 ~ 1038.14 24.72 1059.70 42

Table 5

STATE OF IOWA Suggested Schedule of Registration Pees for Commercial Vehicles and the Estimated Revenue that would be produced based upon the 1958 Distribution of Vehicles

Table 6

÷

Gross	Registration Fee Power Units Only				Number Registered Power Units Only				Pees Produced Power Units Only				
Weight	Annual Fee	Average Fee	Ave. Pee Per Ton	Trucks & Busses	Truck Trailer Combs.	Truck Tractor	Total	Trucks & Busses	Truck Trailer Combs.	Truck Tractor	Total		
4	40.00	38.37	9.59	151,983	-	-	151,983	5,831,587,71	-	-	5,831,587,71		
6	100.00	95.92	15.99	25,191	529	138	25,858	2,416,320,72	50.741.68	13.236.96	2.480.299.35		
8	200.00	191.84	23.98	14,643	1,270	717	16.630	2,809,113,12	243.636.80	137.549.28	3,190,299,20		
10	250.00	239,80	23.98	10,603	1,098	442	12,143	2,542,599.40	263, 300, 40	105.991.60	2.911.891.40		
12	300.00	287.76	23.98	4,725	820	451	5,996	1,359,666.00	235,963.20	129,779.76	1,725,408.96		
14	350.00	335.72	23.98	875	550	331	1,756	293,755.00	184,646.00	111,123.32	589, 524, 32		
16	400.00	383.68	23.98	415	276	456	1,147	159,227.20	105,895.68	174.958.08	440,080,96		
18	450.00	431.64	23.98	575	129	584	1,288	248,193.00	55,681,56	252.077.76	555,952,32		
20	500.00	479.60	23.98	739	73	799	1.611	354,424,40	35,010,80	383.200.40	772.635.60		
22	550.00	527.56	23.98	232	36	610	878	122,393.92	18,992.16	321,811.60	463,197.68		
24	600.00	575.52	23.98	18	21	596	635	10.359.36	12.085.92	343.009.92	365.455.20		
26	650.00	623.48	23.98	-	12	1,286	1,298	-	7.481.76	801.795.28	809.277.04		
28	700.00	671.44	23.98	-	4	2,016	2,020	-	2,685.76	1.353.623.04	1.356.308.80		
30	750.00	719.40	23.98	-	-	454	454	-	-	326.607.60	326,607,60		
32	800.00	767.36	23.98	-	-	603	603	-	-	461,950,72	461,950.72		
34	850-00	815.32	23.98	_	1 _	620	620	-		505.498.40	505 498.40		
36	900.00	863.28	23.98	-	- 1	46	46	-	-	39.710.88	39,710,88		
38	950.00	911.24	23.98	_	-	1 1	l i	-	-	911.24	911.24		
40	1000.00	959.20	23.98	- 1	-	4	4	-	_	3.836.80	3.836.80		
42	1050.00	1007.16	23.98	-	-	2	2	-	-	2,014.32	2,014.32		
Power U	nit Total	-	<u> </u>	209,999	4,818	10,056	224,873	16,147,639.83	1,216,121,72	5,468,686,96	22.832.448.51		
Trailer	8	- ^		-	4,818	12,225	17,043		24,090.00	61,125.00	85,215.00		
Grand T	otal		-	209,999	9,636	22,281	241,916	16,147,639.83	1,240,211.72	5,529,811.96	22,917,663.51		

רינינינינינייייין גייניי

7

RECOMMENDATIONS, IN BRIEF, OF THE STUDY COMMITTEE

(This is a summary for quick reference. The full recommendation can be found in this report on the page indicated following each recommendation.)

I. Recommendations Concerning Primary Highways

-

;

į –

A. That the primary road system be continued in its present size and form without limitation on the number of miles in it. (Page 4)

B. That the 1,900 miles of primary highways classified as "local service primary" roads by ASF be kept in the primary road system and not be separately classified. (Page 4)

C. That the Highway Commission designate and plan a freeway system to be included in the state primary road system. (Page 6)

D. That extensions of primary highways in municipalities be designated, by law, as part of the primary system and that the legislature define clearly the extent of administrative jurisdiction the Highway Commission would have over these highways in municipalities. (Page 7)

E. That the Highway Commission be permitted to turn over certain primary highways to counties, under certain conditions, one year after a highway has been relocated or a nearby parallel primary highway has been built, and that it be permitted to turn over primary extensions to municipalities, at its discretion, when a parallel route has been built. (Page 8 and 9)

F. That the 20-year program of improving the primary system be adopted, eliminating the backlog of needs over the entire 20 year period. (Page 14)

G. That the probability of meeting the primary highway needs within 20 years is dependent upon the money made available, upon costs of construction, and other factors which are now indeterminate, and that the legislature should re-examine periodically the progress being made on this program. (Page 14)

H. That the Highway Commission be permitted to issue revenue bonds to finance the construction of any part of the primary system, especially the interstate system. (Page 14)

I. That the law which restricts the spending of more than 25% of the primary road money in municipalities be repealed. (Page 15)

J. That the law relating to the Highway Commission be changed to make the Commission solely a policy-making body and to create a state highway department under the jurisdiction of the Commission to handle the administrative responsibilities and duties. (Page 16)

K. That the Highway Commission should establish a business administration division, headed by a qualified administrator. (Page 15)

L. That the Highway Commission appoint an urban engineer for each district of the state to assist and advise cities and towns. (Page 17)

M. That expanded and improved cooperation among the Highway Commission, the counties, and the municipalities be achieved in working out mutual plans and problems on roads. (Page 18)

N. That the law prohibiting diagonal roads be repealed. (Page 19)

0. That the Highway Commission and municipalities be permitted to make advance purchases of right-of-way, that the Highway Commission be permitted to exchange property for right-of-way purposes, and that authority be given to permit immediate possession of right-of-way for highways pending final settlement. (Page 19)

II. <u>Recommendations Concerning Secondary Roads</u>

A. That the present mileage of the farm-to-market system be divided into a county trunk and county feeder system, and that an official map be prepared for each county showing the trunk, feeder, and other secondary roads of that county (Page 24)

B. That the current standard specifications of the Highway Commission for the various types of secondary roads be the minimum requirements, and in the case of federal aid secondary roads, the standards of the U.S. Bureau of Public Roads should be the minimum. (Page 26)

C. That the equalization portion of the present farm-to-market road fund distribution be abolished. (Page 30)

D. That the farm-to-market road money be divided among the counties as follows: 60% on the basis of needs as shown in the ASF survey and 40% on the basis of area, and that the division of all other money from the road use tax fund for other secondary roads be distributed among the counties on the same 60% - 40% basis, the needs factor being based on the needs shown by ASF for these other secondary roads. (Page 32)

E. That annually 25% of the money allocated to counties, or \$12,000,000, whichever is larger should be placed in the farm-to-market road fund and be retained by the Highway Commission to match federal aid on federal aid secondary roads. Except for the amount of money, this recommendation would not change the present law. (Page 32)

F. That counties be permitted to issue general obligation or revenue bonds, if approved by the people, for the construction of permanent type roads. (Page 33)

G. That the law be amended to define clearly that the board of supervisors should be solely a policy-making body in county road matters with the county engineer having the immediate responsibility for actual construction and maintenance of secondary roads within a county, and that county supervisors should be paid annual salaries rather than be paid on a per diem basis. (Page 34)

H. That when the engineer's estimate of a county road construction project exceeds \$5,000, the project must be advertised and bids taken, and that such contracts must receive the approval of the Highway Commission. (Page 34)

I. That specifications be required for the purchase of materials for maintenance work on secondary roads, and that materials costing \$3,000 or more must be advertised and bids received and accepted if the bid meets the specifications. (Page 35)
J. That the legislature eliminate the required payment from road funds for private tile lines across highways which have not been affected by the construction or grading such highway. (Page 36)

K. That counties be required to prepare tentative 3-year county road programs. (Page 73)

L. That legislation provide that road plans for rural subdivisions be approved by the board of supervisors and the county engineer before the subdivision is laid out, and that if this requirement is not followed the subdivision roads would not become a part of the secondary road system. (Page 36)

M. That boards of supervisors be permitted to adopt resolutions of necessity and to levy assessments for improvements of streets in existing rural subdivisions. (Page 37)

N. That the optional road levy of counties on all property within the county be increased to $1\frac{1}{2}$ mills. (Page 54)

III. Recommendations About Municipal Streets

•----

ł

<u>.</u>

. L

L

L

1

Ľ

A. That systems of arterial streets and local access streets be permitted, but not required, in municipalities. (Page 41)

B. That the money distributed to municipalities from the road use tax fund be divided among the municipalities as follows: 60% be divided on a needs basis according to the population groups and needs of the ASF report and that the money within these groups be divided in proportion to population, and that the other 40% of the money be divided among the municipalities on a population basis. (Page 48)

C. That cities over 5,000 population be required to prepare 5-year construction programs and that other communities be required to prepare 1-year programs. (Page 51)

D. That all municipalities be required to submit annual budgets and project by project programs to the Highway Commission by December 1st. (Page 51)

E. That each municipality be required to make an annual report of its street finances and progress to the Highway Commission. (Page 51)

F. That each municipality designate one person to represent the city on road matters in working with state and county officials. (Page 51)

G. That the Highway Commission be permitted to provide technical assistance on traffic engineering matters to cities under 50,000 population at cost. (Page 52)

H. That municipalities of less than 5,000 people be permitted to contract, at cost, with cities or counties for street construction or maintenance work (Page 53)

I. That municipal authorities be permitted to approve or disapprove any proposed plat within one mile of its limits. (Page 37)

J. That municipalities be permitted to issue revenue bonds streets. (Page 54)

IV. Recommendations About State Park and Institutional Roads

A. That roads and streets adjacent to state institutions be clearly made the responsibility of the local authorities. (Page 57)

B. That expenditures for state parks and institutional roads be financed from the road use tax fund by an appropriation made by the legislature. (Page 57)

V. Recommendations About the Division of the Road Use Tax Money

A. That the 2¢ temporary gasoline tax be made permanent. (Page 60)

B. That the committee disagrees with the recommendations of PAS concerning motor vehicle taxation, and that the committee believes that the legislature should consider the proposed truck fee schedule prepared by the Highway Commission attached to this report, and that the administration of the value and weight portion of the passenger car fee should be studied. (Page 61) _

-

C. That certain expenditures should be paid from off the top of the road use tax fund before distributions are made to the various road systems. (Page 62)

D. That the money in the road use tax fund be distributed on the present basis until December 31, 1961. (Page 65)

E. That beginning January 1, 1962 the money in the road use tax fund should be divided 50% to the primary road system. 35% to the secondary road system, and 15% for municipal streets. (Page 65)

F. That the legislature should consider and explore other sources of revenue to meet the needs of all highway systems. (Page 62)

VI. Recommendations about Highway Safety Matters

A. That the legislature create a traffic safety coordinating committee of state administrative officials. (Page 67)

B. That the legislature establish the position of state traffic safety coordinator. (Page 68)

C. That the legislature provide for continuing study of highway safety matters. (Page 67)

D. That a statewide citizens safety council be established. (Page 68)

E. That local traffic safety groups be encouraged by the state. (Page 68)

F. That the legislature study and review the comparison of Iowa's motor vehicle laws with the uniform vehicle code. (Page 68)

G. That licenses for drivers 16 to 20 years of age should be probationary and driving by persons of this age be restricted from midnight to 6 a.m. (Page 69)

H. That the legislature consider the different types of legislation concerning control of the drinking driver pointed out in the committee's subcommittee report on safety. (Page 69)

VII. Miscellaneous Recommendations

3 👳

:

<u>ب</u>يد

. L___

لمسم

سع

; . اسم

A. That the Motor Vehicle Fuel Tax Department in the Treasurer's office should be under the budget law. (Page 71)

B. That the Highway Commission should be under the budget law, except for funds needed to match federal aid for special purposes. (Page 71)

C. That an interim study committee be established to give continuing study and further review of the reports of ASF, PAS, and this committee. (Page 71)

- ----

--- -- -

.....

_. _ _ . _ .