

Iowa Department of Education

Student Achievement, Accountability and Professional Development Annual Report

Iowa Department of Education

Grimes State Office Building Des Moines, IA 50319

January, 2011

State of Iowa **Department of Education** Grimes State Office Building 400 E 14th St Des Moines IA 50319-0146

State Board of Education

Rosie Hussey, President, Clear Lake Charles C. Edwards, Jr., Vice President, Des Moines Sister Jude Fitzpatrick, West Des Moines Michael Knedler, Council Bluffs Valorie J. Kruse, Sioux City Ana Lopez-Dawson, Pella Max Phillips, Woodward LaMetta Wynn, Clinton Corey Anderson, Student Member, Norwalk

Administration

Kevin Fangman, Acting Director and Executive Officer of the State Board of Education Gail M. Sullivan, Chief of Staff

Division of PK-12 Education

Kevin Fangman, Administrator

Bureau of Teaching and Learning Services

Mary Beth Schroeder-Fracek, Administrative Consultant Rita Martens, Lead Consultant

Bureau of Accreditation and Improvement Services Matt Ludwig, Consultant

Division of School Support and Information Tom Deeter, Lead Consultant

It is the policy of the Iowa Department of Education not to discriminate on the basis of race, creed, color, sex, sexual orientation, gender identity, national origin, gender, disability, religion, age, political party affiliation, or actual or potential parental, family or marital status in its programs, activities, or employment practices as required by the *Iowa Code* sections 216.9 and 256.10(2), Titles VI and VII of the Civil Rights Act of 1964 (42 U.S.C. § 2000d and 2000e), the Equal Pay Act of 1973 (29 U.S.C. § 206, et seq.), Title IX (Educational Amendments, 20 U.S.C. §§ 1681 – 1688) Section 504 (Rehabilitation Act of 1973, 29 U.S.C. § 794), and the Americans with Disabilities Act (42 U.S.C. § 12101, et seq.).

If you have questions or grievances related to compliance with this policy by the Iowa Department of Education, please contact the legal counsel for the Iowa Department of Education, Grimes State Office Building, 400 E 14th St, Des Moines IA 50319-0146, telephone number 515/281-5295, or the Director of the Office for Civil Rights, U.S. Department of Education, 111 N. Canal Street, Suite 1053, Chicago, IL 60606-7204

Legislation passed during the 2001 lowa legislative session established the Student Achievement and Teacher Quality Program, lowa Code Section 284.12(1). This legislation requires the lowa Department of Education (DE) to annually report the statewide progress on the following: student achievement scores in mathematics and reading at the fourth and eighth grade levels on a district-by-district basis; evaluator training program; team-based variable pay for student achievement; and changes and improvements in the evaluation of teachers under the lowa Teaching Standards. The report is being made available to the chairpersons and ranking members of the Senate and House committees on education, the legislative education accountability and oversight committee, the deans of the colleges of education at approved practitioner preparation institutions in this state, the State Board of Education, the Governor, and school districts.

Student Achievement Scores in Reading and Mathematics at the Fourth and Eighth Grade Levels on a District-by-District Basis 2008-09 & 2009-10 Biennium Adequate Yearly Progress Report Percentage of Students Proficient (Iowa School Districts)

	Grade 4	Grade 4 Mathematics	Grade 8	Grade 8 Mathematics
Agency Name AGWSR CSD	Reading 77.92	81.82	Reading 68.37	75.51
Adair-Casey CSD	82.05	89.74	73.77	73.77
Adel DeSoto Minburn CSD	91.04	87.06	85.11	88.83
Akron Westfield CSD	86.67	82.67	83.56	79.45
Albert City-Truesdale CSD	78.26	86.96		ux Central
Albia CSD	84.17	79.86	76.28	78.85
Alburnett CSD	77.03	73.97	81.44	88.66
Alden CSD	79.31	82.76		wa Falls
Algona CSD	91.37	87.77	74.12	79.41
Allamakee CSD	82.64	78.47	85.49	84.46
Allison-Bristow CSD	92.11	89.47	76.40	79.78
Alta CSD	84.13	85.71	76.81	75.36
Ames CSD	88.64	88.03	81.37	85.10
Anamosa CSD	75.68	80.41	72.92	76.04
Andrew CSD	72.22	66.67	78.38	94.59
Anita CSD	82.61	91.30	to C	and M
Ankeny CSD	88.54	88.29	84.42	84.79
Anthon-Oto CSD	80.00	88.00	80.16	78.57
Aplington-Parkersburg CSD	80.17	74.38	69.23	68.38
Armstrong-Ringsted CSD	80.49	82.93	79.17	83.33
Ar-We-Va CSD	91.89	86.49	70.45	86.36
Atlantic CSD	82.16	81.13	70.41	76.02
Audubon CSD	80.56	86.11	75.00	88.00
Aurelia CSD	85.37	85.37	81.82	63.64
A-H-S-T CSD	76.09	75.00	82.35	92.65
Ballard CSD	80.83	85.83	84.73	90.15
Battle Creek-Ida Grove CSD	84.62	91.03	72.50	82.50
Baxter CSD	78.57	80.36	81.25	87.50
BCLUW CSD	85.00	88.75	86.46	84.38
Bedford CSD	84.06	82.61	80.28	87.32
Belle Plaine CSD	84.62	90.77	70.45	72.73

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Bellevue CSD	72.73	83.33	76.92	80.22
Belmond-Klemme CSD	80.00	80.00	59.46	56.76
Bennett CSD	95.45	95.45	to	Durant
Benton CSD	76.53	78.87	85.71	79.91
Bettendorf CSD	87.17	83.51	80.51	81.86
Eddyville-Blakesburg CSD	80.22	84.62	73.53	74.00
Bondurant-Farrar CSD	88.65	90.27	74.23	79.14
Boone CSD	85.37	85.37	72.75	79.34
Boyden-Hull CSD	81.40	87.21	71.79	80.52
West Hancock CSD	75.64	70.51	68.97	75.86
Brooklyn-Guernsey-Malcom CSD	82.81	84.38	63.75	71.60
North Iowa CSD	74.14	77.59	72.15	83.54
Burlington CSD	81.12	79.42	71.35	70.06
C and M CSD	76.67	50.00	72.92	81.25
CAL CSD	83.87	77.42	72.00	72.00
Calamus-Wheatland CSD	92.86	91.43	74.70	77.11
Camanche CSD	73.86	79.08	72.55	73.68
Cardinal CSD	83.08	80.00	71.91	56.18
Carlisle CSD	84.82	88.72	79.41	86.13
Carroll CSD	86.10	81.17	82.63	85.71
Cedar Falls CSD	87.58	87.06	79.88	82.51
Cedar Rapids CSD	75.52	76.65	73.67	76.67
Center Point-Urbana CSD	78.61	78.61 78.22		87.89
Centerville CSD	73.82	73.82 80.63		75.00
Central Lee CSD	82.71	89.31	74.51	80.52
Central CSD	80.00	76.92	79.27	80.49
Central Clinton CSD	85.86	84.85	77.93	80.75
Central City CSD	80.65	72.58	71.43	73.47
Central Decatur CSD	71.76	.76 71.76 7		69.31
Central Lyon CSD	91.36	1.36 87.65		79.22
Chariton CSD	86.63	78.71	75.24	81.95
Charles City CSD	83.87	82.26	73.68	75.35
Charter Oak-Ute CSD	85.11	89.36	67.35	75.00
Cherokee CSD	79.86	83.33	69.33	66.67
Clarinda CSD	76.86	69.42	68.97	72.41
Clarion-Goldfield CSD	79.67	84.55	86.05	85.27
Clarke CSD	74.12	80.59	72.16	78.41
Clarksville CSD	78.72	91.49	81.13	66.04
Clay Central-Everly CSD	82.98	91.49	75.56	77.78
Clear Creek Amana CSD	82.39	81.25	79.17	80.10
Clearfield CSD	N < 10	N < 10	to Diagonal,	Lenox, Mt. Ayr
Clear Lake CSD	77.66	83.51	77.50	77.50
Clinton CSD	75.10	81.14	63.01	68.04
Colfax-Mingo CSD	77.08	80.21	63.64	62.39
College CSD	85.92	88.70	80.87	83.69
Collins-Maxwell CSD	71.01	74.29	85.00	91.67

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Colo-Nesco CSD	90.14	88.57	76.47	78.26
Columbus CSD	53.33	68.33	52.76	54.33
Coon Rapids-Bayard CSD	75.00	86.76	65.96	72.34
Corning CSD	83.33	89.39	77.63	82.89
Corwith-Wesley CSD	To l	u Verne	92.31	92.31
Council Bluffs CSD	74.67	77.34	68.69	66.55
Creston CSD	80.35	78.74	74.37	76.38
Dallas Center-Grimes CSD	90.07	91.39	84.36	84.00
Danville CSD	85.07	73.13	70.37	87.65
Davenport CSD	72.54	75.02	64.81	64.73
Davis County CSD	84.14	84.83	79.25	81.13
Decorah CSD	92.08	88.61	90.13	92.27
Delwood CSD	93.33	93.33	to Ma	aquoketa
Denison CSD	72.04	69.19	72.34	78.01
Denver CSD	89.90	91.92	88.39	87.50
Des Moines Independent CSD	65.61	67.47	58.25	63.04
Diagonal CSD	82.35	88.24	N < 10	N < 10
Dike-New Hartford CSD	85.98	90.65	80.17	87.93
Dows CSD	92.86	92.86 78.57		on-Goldfield
Dubuque CSD	78.42	79.33	75.95	77.91
Dunkerton CSD	82.81	85.94	66.20	77.14
Boyer Valley CSD	75.38	73.85	63.33	81.67
Durant CSD	80.28	84.51	78.33	74.17
Eagle Grove CSD	73.74	73.74 80.81		75.27
Earlham CSD	87.39	74.77	76.62	76.62
East Buchanan CSD	82.14	78.57	66.25	76.25
East Central CSD	73.08	82.69	62.50	70.91
East Greene CSD	73.08	60.78	75.00	77.08
East Marshall CSD	76.92	80.34	69.86	71.92
East Union CSD	84.62	80.77	60.71	64.29
Eastern Allamakee CSD	90.16	93.44	80.95	88.89
River Valley CSD	77.94	73.53	78.43	74.00
Edgewood-Colesburg CSD	80.00	84.00	55.26	60.00
Eldora-New Providence CSD	77.38	82.14	to Hubb	ard-Radcliff
Elk Horn-Kimballton CSD	97.14	97.14	71.79	76.92
Emmetsburg CSD	82.95	81.82	65.66	75.51
English Valleys CSD	76.92	90.38	74.03	79.22
Essex CSD	74.42	79.07	64.29	63.41
Estherville Lincoln Central CSD	84.66	78.98	68.00	71.75
Exira CSD	78.79	72.73	71.79	82.05
Fairfield CSD	81.66	81.50	77.95	76.77
Farragut CSD	92.00	80.00	55.26	63.16
Forest City CSD	93.79	93.13	81.01	83.54
Fort Dodge CSD	75.81	74.95	64.66	69.90
Fort Madison CSD	83.97	84.67	73.63	76.03
Fredericksburg CSD	81.58	89.74	74.80	82.93

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Fremont CSD	68.18	72.73	70.59	64.71
Fremont-Mills CSD	71.43	79.59	64.06	75.00
Galva-Holstein CSD	87.30	84.38	80.60	77.61
Garner-Hayfield CSD	82.88	90.09	73.21	73.21
George-Little Rock CSD	88.71	85.48	86.89	77.05
Gilbert CSD	92.73	94.55	89.08	86.21
Gilmore City-Bradgate CSD	70.97	76.67	73.68	81.58
Gladbrook-Reinbeck CSD	77.33	81.33	62.96	69.14
Glenwood CSD	85.30	85.71	82.55	79.19
Glidden-Ralston CSD	85.11	82.98	80.00	82.22
Graettinger CSD		to	Terril	
Greene CSD	85.71	95.12		on-Bristow
Nodaway Valley CSD	80.68	75.00	77.66	81.05
GMG CSD	87.10	87.10	72.73	78.79
Grinnell-Newburg CSD	81.60	89.15	81.25	85.16
Griswold CSD	83.72	84.88	82.98	81.91
Grundy Center CSD	82.43	85.14	79.55	87.50
Guthrie Center CSD	84.00	78.67	80.00	81.33
Clayton Ridge CSD	68.35	78.48	74.03	75.32
H-L-V CSD	76.09	76.09	73.58	86.79
Hamburg CSD	85.71	74.29	60.00	68.57
Hampton-Dumont CSD	77.46	76.60	76.55	73.10
Harlan CSD	89.73	84.38	83.20	81.33
Harmony CSD	91.11	82.22	61.22	63.27
Harris-Lake Park CSD	97.44	97.44 100.00		84.62
Hartley-Melvin-Sanborn CSD	86.30	83.56	75.86	80.46
Highland CSD	69.91	69.91 69.03		66.30
Hinton CSD	73.79	84.47	78.13	83.33
Howard-Winneshiek CSD	73.41			82.27
Hubbard-Radcliffe CSD	66.67	71.79	69.11	67.48
Hudson CSD	82.93	81.71	75.93	84.26
Humboldt CSD	87.76	91.10	81.61	81.03
Independence CSD	80.53	84.21	66.32	66.32
Indianola CSD	85.25	81.45	86.60	87.63
Interstate 35 CSD	80.77	82.69	75.56	73.33
Iowa City CSD	79.81	79.08	76.57	79.30
Iowa Falls CSD	82.91	87.97	79.69	82.20
Iowa Valley CSD	85.00	88.33	62.86	80.95
IKM CSD	82.98	89.36	77.88	88.46
Janesville Consolidated SD	74.19	74.19	75.00	87.50
Jefferson-Scranton CSD	87.68	89.13	86.26	81.68
Jesup CSD	72.87	69.77	73.91	74.78
Johnston CSD	90.33	90.10	89.81	91.22
Keokuk CSD	74.28	77.09	61.82	63.51
Keota CSD	83.72	88.37	80.00	92.50
Kingsley-Pierson CSD	82.14	71.43	72.00	81.33

82.35 73.56 74.29 58.62 88.89 86.33 85.71 73.02 76.03	88.24 82.76 68.57 68.97 88.89 79.93 76.79 71.33	72.36 76.62 67.31 68.42 77.11 78.55 54.35	77.45 81.01 72.55 80.70 81.93
74.29 58.62 88.89 86.33 85.71 73.02 76.03	68.57 68.97 88.89 79.93 76.79	67.31 68.42 77.11 78.55	72.55 80.70
58.62 88.89 86.33 85.71 73.02 76.03	68.97 88.89 79.93 76.79	68.42 77.11 78.55	80.70
88.89 86.33 85.71 73.02 76.03	88.89 79.93 76.79	77.11 78.55	
86.33 85.71 73.02 76.03	79.93 76.79	78.55	81.93
85.71 73.02 76.03	76.79		
73.02 76.03		54.35	86.47
76.03	71.33	0.000	69.57
		64.30	67.68
N = 10	83.47	77.95	82.68
N < 10	N < 10	N < 10	N < 10
88.96	87.31	83.06	84.81
75.29	85.88	84.34	91.57
89.11		84.91	87.74
77.14	90.00	62.67	80.00
79.25	85.85	51.56	61.42
			vith-Wesley
			85.33
			74.12
			na Valley
		87.00	85.00
			68.83
			88.33
			88.73
			79.76
			68.37
			74.03
			76.43
			88.30
			85.51
			81.63
			70.97
			80.83
			72.22
			73.64
			81.54
			81.53
			73.81 64.29
		to Wapello, Winfield Mt. Unic Mediapolis	
			81.82
			82.56
			72.30
			82.74
			72.09
	89.11 77.14	89.11 88.12 77.14 90.00 79.25 85.85 66.67 66.67 90.63 90.63 83.00 87.00 87.50 93.75 84.75 69.49 76.83 81.71 70.83 68.75 73.21 72.46 89.90 90.91 85.71 87.76 75.35 83.45 66.00 67.28 78.48 82.28 80.29 77.74 88.13 89.31 92.98 98.25 95.56 86.67 75.93 74.07 81.60 84.05 72.73 76.03 78.00 87.00 85.19 77.78 77.34 82.81 82.93 87.80 63.64 51.52 89.29 85.71 82.35 91.18 94.67 94.67 84.47 <td>89.11 88.12 84.91 77.14 90.00 62.67 79.25 85.85 51.56 66.67 66.67 to Corw 90.63 90.63 72.00 83.00 87.00 70.59 87.50 93.75 to Nish 84.75 69.49 to 76.83 81.71 87.00 70.83 68.75 to Am 73.21 72.46 67.81 89.90 90.91 78.33 85.71 87.76 84.72 75.35 83.45 69.17 66.00 67.28 62.83 78.48 82.28 66.23 80.29 77.74 74.64 88.13 89.31 84.57 92.98 98.25 83.33 95.56 86.67 77.55 75.93 74.07 53.13 81.60 84.05 72.16 72.73 76.03 74.60 <t< td=""></t<></td>	89.11 88.12 84.91 77.14 90.00 62.67 79.25 85.85 51.56 66.67 66.67 to Corw 90.63 90.63 72.00 83.00 87.00 70.59 87.50 93.75 to Nish 84.75 69.49 to 76.83 81.71 87.00 70.83 68.75 to Am 73.21 72.46 67.81 89.90 90.91 78.33 85.71 87.76 84.72 75.35 83.45 69.17 66.00 67.28 62.83 78.48 82.28 66.23 80.29 77.74 74.64 88.13 89.31 84.57 92.98 98.25 83.33 95.56 86.67 77.55 75.93 74.07 53.13 81.60 84.05 72.16 72.73 76.03 74.60 <t< td=""></t<>

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Muscatine CSD	86.15	87.88	76.43	80.06
Nashua-Plainfield CSD	82.72	97.53	72.48	87.16
Nevada CSD	80.93	77.21	84.95	86.02
Newell-Fonda CSD	78.69	81.97	73.08	92.00
New Hampton CSD	81.82	83.64	76.39	72.22
New London CSD	74.29	77.14	69.86	84.93
Newton CSD	77.80	75.00	77.10	75.18
Nishna Valley CSD	92.59	92.59	76.83	81.71
Nora Springs-Rock Falls CSD	80.00	78.00	76.43	82.14
North Central CSD	91.53	93.22	to Nora Spri	ngs - Rock Falls
Northeast CSD	82.52	86.41	81.73	93.20
North Fayette CSD	92.59	89.81	77.27	77.98
Northeast Hamilton CSD	77.14	91.43	78.05	82.93
North Mahaska CSD	80.39	82.35	78.16	72.41
North Linn CSD	87.91	90.11	73.27	84.16
North Kossuth CSD	85.37	80.49	То	Sentral
North Polk CSD	88.34	85.98	83.80	85.47
North Scott CSD	86.87	89.87	79.45	78.98
North Tama County CSD	80.30	87.69	75.00	75.00
North Winneshiek CSD	78.13	78.13	65.71	77.14
Northwood-Kensett CSD	83.08	86.15	74.03	79.22
Norwalk CSD	85.55	88.39	75.85	82.39
Odebolt-Arthur CSD	100.00	96.88	73.68	78.95
Oelwein CSD	79.43	84.29	74.21	79.89
Ogden CSD	92.05	91.95	82.73	82.57
Okoboji CSD	88.18	90.00	82.95	82.17
Olin Consolidated SD	82.76			55.56
Orient-Macksburg CSD	72.73	86.36	60.71	64.29
Osage CSD	86.40	85.60	83.85	87.69
Oskaloosa CSD	77.68	78.55	72.93	79.05
Ottumwa CSD	74.96	73.93	68.39	69.64
Panorama CSD	89.25	86.02	73.50	76.07
Paton-Churdan CSD	82.61	91.30	73.68	73.68
PCM CSD	85.94	85.16	84.30	78.51
Pekin CSD	88.57	87.62	73.68	76.84
Pella CSD	91.93	91.30	89.68	89.35
Perry CSD	73.20	69.08	72.13	64.73
Pleasant Valley CSD	87.02	88.57	82.21	88.54
Pleasantville CSD	89.11	85.15	58.33	67.86
Pocahontas Area CSD	94.23	94.12	82.86	82.86
Pomeroy-Palmer CSD	73.91	86.96	80.00	75.38
Postville CSD	68.00	69.33	66.10	61.02
Prairie Valley CSD	90.11	90.11	72.38	79.25
Prescott CSD	90.91	100.00		acksburg, Corning
Preston CSD	85.96	94.74	82.93	87.80
Red Oak CSD	73.72	75.64	71.66	73.26

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Remsen-Union CSD	88.46	90.38	74.58	72.88
Riceville CSD	78.05	80.49	64.10	69.23
Riverside CSD	83.05	83.05	78.31	83.13
Rock Valley CSD	85.14	84.00	72.04	80.65
Rockwell-Swaledale CSD	80.81	82.83	67.89	76.85
Rockwell City-Lytton CSD	86.57	92.54	78.38	83.78
Roland-Story CSD	89.29	85.71	81.63	83.67
Rudd-Rockford-Marble Rock CSD	73.75	80.00	69.12	72.06
Ruthven-Ayrshire CSD	72.97	83.78	60.71	67.86
Sac CSD	80.33	68.85	72.54	77.46
St Ansgar CSD	86.46	90.63	72.07	80.18
Saydel CSD	73.62	68.90	62.21	63.95
Schaller-Crestland CSD	65.96	65.96	68.52	83.33
Schleswig CSD	97.14	88.57	89.47	76.32
Sentral CSD	90.48	95.24	64.86	70.27
Sergeant Bluff-Luton CSD	90.37	91.28	82.73	76.36
Seymour CSD	76.67	93.33	68.97	79.31
Sheffield Chapin Meservey Thornton CSD	10101		ell-Swaledale	10101
Sheldon CSD	84.06	89.86	80.14	87.94
Shenandoah CSD	86.26	78.63	72.67	71.52
Sibley-Ocheyedan CSD	84.26	78.50	79.41	87.25
Sidney CSD	76.60	66.67	77.78	88.89
Sigourney CSD	75.31	81.48	76.92	74.36
Sioux Center CSD	89.33	85.33	78.79	93.94
Sioux Central CSD	63.08	76.92	71.58	68.42
Sioux City CSD	70.18	70.32	65.88	65.70
Southern Cal CSD	91.94	83.87	69.70	78.79
Southern Cal CSD	31.34	05.07		Ayrshire, Sioux
South Clay CSD	N < 10	N < 10		I, Spencer
Solon CSD	84.71	81.76	85.44	82.04
Southeast Warren CSD	76.62	90.91	63.77	81.16
South Hamilton CSD	82.24	82.24	81.82	83.64
Southeast Webster Grand CSD	85.90	84.62	67.61	74.65
South Page CSD	78.57	85.71	70.83	75.00
South Tama County CSD	67.66	73.13	66.51	65.53
South O'Brien CSD	81.48	76.54	78.72	87.23
South Winneshiek CSD	85.71	83.93	82.35	91.18
Southeast Polk CSD	82.36	85.75	76.30	76.06
Spencer CSD	81.89	78.51	79.37	80.25
Spirit Lake CSD	88.66	87.63	80.24	86.75
Springville CSD	74.19	75.81	71.67	73.77
Stanton CSD	86.11	83.33	74.29	77.14
Starmont CSD	82.00	83.17	75.86	74.71
Storm Lake CSD	72.43	64.95	57.49	62.75
Stratford CSD	94.74	94.74		bster City
West Central Valley CSD	83.17	74.26	78.26	79.13

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Terril CSD	97.37	94.74	68.18	79.55
Tipton CSD	82.93	87.80	80.80	76.00
Titonka Consolidated SD	73.33	80.00	69.05	66.67
Treynor CSD	88.89	87.88	89.42	86.54
Tri-Center CSD	80.77	81.73	63.96	76.58
Tri-County CSD	77.55	75.51	64.00	72.00
Tripoli CSD	80.88	77.94	80.56	73.61
Turkey Valley CSD	87.76	93.88	71.62	79.73
Twin Cedars CSD	75.93	87.04	72.73	73.86
Underwood CSD	88.79	92.52	80.49	77.24
Union CSD	85.39	81.56	75.39	81.15
United CSD	82.93	87.80	to Boo	one, Ames
Urbandale CSD	86.59	85.57	83.89	88.02
Valley CSD	86.30	79.17	77.78	74.07
Van Buren CSD	85.88	87.21	62.37	62.37
Van Meter CSD	90.70	90.70	84.27	80.90
Ventura CSD	80.95	73.81	75.47	77.36
Villisca CSD	70.59	76.47	63.64	72.73
Vinton-Shellsburg CSD	82.98	80.51	69.23	75.21
Waco CSD	83.08	83.08 83.08 66.67		72.46
Wall Lake View Auburn CSD	87.30	79.37	to	Sac
Walnut CSD	71.43	75.00	86.36	72.73
Wapello CSD	81.19	80.20	59.84	61.48
Wapsie Valley CSD	75.45	76.36	67.89	67.89
Washington CSD	68.80	72.80	69.92	79.30
Waterloo CSD	63.89	64.57	58.79	59.94
Waukee CSD	89.77	90.16	86.13	84.39
Waverly-Shell Rock CSD	94.98	94.52	85.33	90.00
Wayne CSD	82.67	89.33	81.48	82.72
Webster City CSD	87.00	88.00	80.52	83.90
West Bend-Mallard CSD	78.72	87.23	73.47	81.63
West Branch CSD	81.73	79.81	70.08	74.02
West Burlington Ind SD	68.82	72.04	78.13	76.04
West Central CSD	91.89	81.08	88.68	92.45
West Delaware County CSD	80.00	80.56	80.91	87.55
West Des Moines CSD	86.92	86.72	84.79	85.76
Western Dubuque CSD	79.90	86.45	76.43	83.42
West Harrison CSD	87.30	79.37	69.05	69.05
West Liberty CSD	60.99	64.84	60.14	78.38
West Lyon CSD	95.10	92.16	83.33	84.38
West Marshall CSD	81.36	92.37	66.18	72.06
West Monona CSD	69.51	75.61	77.01	77.01
West Sioux CSD	72.37	80.26	70.67	81.33
Westwood CSD	65.22	84.78	64.37	63.22
Whiting CSD	100.00	96.30	74.29	70.59
Williamsburg CSD	91.24	90.58	78.47	78.47

Agency Name	Grade 4 Reading	Grade 4 Mathematics	Grade 8 Reading	Grade 8 Mathematics
Wilton CSD	83.81	85.71	66.14	79.53
Winfield-Mt Union CSD	72.13	85.25	76.81	81.16
Winterset CSD	85.19	84.36	85.52	85.97
Woden-Crystal Lake CSD		to T	itonka	
Woodbine CSD	71.74	82.61	75.68	74.32
Woodbury Central CSD	77.22	72.15	81.52	79.35
Woodward-Granger CSD	83.04	78.57	76.25	81.25

Iowa Evaluator Approval Training Program

What is the Iowa Evaluator Approval Training Program (IEATP)?

During the 2002 legislative session, IEATP was mandated for any educator who wanted to obtain the new evaluator license, renew his/her administrative endorsement or the corresponding general administrative endorsement. The legislation required the implementation and use of the Iowa Teaching Standards and Criteria for teachers in 2002 and Iowa Standards for School Leaders (ISSL) in 2007 while engaging in the evaluation process and the daily efforts of educators in Iowa school districts, buildings, and classrooms. The materials and training for IEATP were developed in a cooperative effort amongst the Iowa Department of Education (DE), the Board of Educational Examiners (BoEE), the area education agencies (AEA), the institutions of higher education (IHE), the School Administrators of Iowa (SAI), Iowa Association of School Boards (IASB) and other educational agencies aimed at improving teaching and learning through quality educational leadership.

As the training program evolved, the DE and its partners worked with state and national experts to develop and implement a standards-based evaluation system, define and incorporate model descriptors to support the criteria, and develop and pilot a comprehensive evaluation instrument. The experts included Dr. Tom McGreal, Professor Emeritus, University of Illinois; Dr. Beverly Showers, Professional Development Consultant; Dr. Charlotte Danielson, Outcomes Associates; Dr. Vickie Trent, UNI; and other national and statewide educational professionals. The evaluation system framework, model descriptors, and the comprehensive evaluation system can be found on the DE website (www.iowa.gov/educate/) located in the Educator and/or Administrator Quality links. The evolution of this earlier work, the partnerships amongst the various educational agencies/organizations, and the commitment to a quality educational system led to the development and implementation of Evaluator Approval Level I (2002), Evaluator Approval Level II – Evaluation of Teachers or Administrators (2007), and Evaluator Approval Level III (2011).

IEATP Level I and II

Following the 2002 legislative session, *IEATP Level I* was introduced across the state to IHEs, AEAs, LEAs, and other educational agencies/organizations. A statewide application process for potential trainers was conducted and 65 trainers from across the state were selected. Training began in the fall of 2002 and was delivered in five regions across the state. The outcomes for Level I training expected the participants to:

- Explain Iowa Teacher Quality Legislation
- Learn the Iowa Teacher Standards and Iowa Standards for School Administrators.
- Interpret how the Iowa evaluation requirements are met in their district.
- Define Objective, Reflective, Interpretive, and Decisional (ORID) questions.
- Practice teacher observation techniques.
- Prepare and apply ORID questioning techniques in conferencing.
- Demonstrate their learning by applying knowledge of the 8 Teaching Standards and applying ORID questioning in summarizing a teacher observation during a post observation conference.

By June 2006 over 2,300 participants had satisfactorily completed the Level I training. The costs of the training were paid for through registration fees.

In the fall of 2008, the DE and SAI introduced an online *IEATP Level I* for experienced administrators new to Iowa. SAI is hosting the online training site and providing an "instructor of record" to support the participating administrators.

The content for the two renewal courses: *IEATP Level II: Evaluation of Teachers* and *IEATP Level II: Evaluation of Administrators* was also developed through collaborative efforts with the DE, SAI, AEAs, the Wallace Foundation Leadership Grant, and other educational agencies. Evaluator Approval Renewal trainings were designed to focus on the evaluation of teachers using the Iowa Teaching Standards and the evaluation of administrators using the Iowa Standards for School Leaders. Trainers, approximately 76 professionals, were trained during the spring of 2007. Twenty-eight trainers delivered the training to administrators in their home district. This provided a valuable opportunity for the districts to incorporate their training with the district's local evaluation process and procedures. Five higher education professors and the executive director of the Iowa Board of Educational Examiners (BoEE) also received this training to provide knowledge to enhance their work with Iowa administrators. These two renewal courses are offered through the AEAs. The costs of the renewal training were paid for through registration fees.

The *IEATP Level II: Evaluation of Teachers* is designed for principals and other educational leaders who are responsible for the evaluation of teachers' skill attainment and enhancement. The training is focused on:

- Effective leadership practices in evaluation;
- Knowledge and understanding of best practice in writing an individual career development plan and writing intensive assistance plans;
- Skills in the use of effective strategies for formative conferencing and the use of coaching strategies.

The *IEAPT Level II: Evaluation of Administrators* is designed for superintendents and other educational leaders responsible for the evaluation of administrators' skill attainment and enhancement. Fifty trainers were trained to teach the renewal course to evaluate administrators. Eleven higher education professors and the executive director of the BoEE took part in the training to enhance their knowledge as they work with future and current lowa administrators. The training is focused on:

- Application of the Iowa Standards for School Leaders;
- Recognition of effective principal behaviors that increase student achievement, including use of data, alignment of curriculum, instruction, and assessment, and first- and second-order change;
- Research and the application of effective superintendent behaviors that increase student achievement;
- · Coaching skills to enhance principals' skills as instructional leaders; and
- Models of principal evaluation processes, including design and the use of an individual career development plan for principals.

Currently, administrators are required to complete either *Iowa Evaluator Approval Training Program II: Evaluation of Administrators* OR *Iowa Evaluator Approval Training Program II: Evaluation of Teachers* for renewal. Individuals may choose to take both to complete their required four hours for license and evaluator renewal. Administrators have been encouraged to take the course most pertinent in his/her current job description.

As of January 2011, the DE will sunset the Level I and II face-to face training for anyone needing an administrator/evaluator license and provide the training through an online course, *iEvaluate – Teacher* or *iEvaluate – Administrator*. This training will continue to focus on the Iowa Teaching Standards, the Iowa Standards for School Leaders, effective evaluation skill sets, the individual professional development plan, ethics, etc. If an educator is in a preparation program at an Iowa college/university, the necessary training will continue to be a part of the coursework; however, if the educator is new to Iowa, he/she will need to complete the newly developed online training that is appropriate to his/her current position.

IEATP Level III

During the past two years, the Evaluator Advisory Committee represented by LEAs, AEAs, IHEs, SAI, IASB, BOEE, and DE have been working collaborativey to analyze data regarding evaluation, reading and reflecting on research, seeking best practices in evaluation that improves teaching and learning, and designing Evaluator Approval Level III. As the new calendar year approaches, the DE will be unveiling Evaluator Approval Level III for those professionals who will need to renew their administrator/evaluator license and have successfully completed Evaluator Approval Level I and II prior to January 2011.

The training for Evaluator Approval Level III will look somewhat different than the previous training for Evaluator Approval Levels I and II. Beginning January 2012, the four credits required to renew an administrator/evaluator's license will be completed by selecting from a menu of required modules that will enhance the skills necessary to be an effective instructional leader and evaluator. Each administrator/evaluator will successfully complete one common learning module - *Assessing Academic Rigor* – for two required renewal credits. The additional two credits required to renew an administrative/evaluator license will be earned by selecting from any one of the additional modules:

- Fierce Conversations (available in all AEAs)
- Increasing the Effectiveness of Leadership Teams (release date Spring 2011)
- Employee Discipline/Intensive Assistance Plans
- Developing Professional Development Plans that Impact Teaching and Learning
- Leadership Skills for Beating the Odds

Level III & Beyond

The IEAPT Level III implementation and support is crucial to leaders/evaluators across the state. The purpose of the training is to build the knowledge and skills of the leaders/evaluators in an accountability era, build and integrate his/her coaching strategies into the evaluation process, and improve teaching and student learning in Iowa schools. In an effort to meet these expectations, the Evaluator Advisory Committee is committed to monitoring and supporting the evaluator approval training modules and engaging with leaders across the state to refine and improve these modules and any other future modules that will assist us in attaining a world-class educational community.

Currently, the advisory committee is working with a website developer to design an evaluator approval website. This website will allow school administrators/leaders access to various resources related evaluator approval. It will also provide a permanent home for the new online learning for Level I and II training for new administrators/evaluators. The plan for the website is to include a forum to share ideas, experiences, and learning opportunities to enhance their evaluator skills and knowledge.

Finally, the advisory committee will be engaging in a research and development mode to measure the impact of the evaluation process on teaching and student learning. The committee will be spending time over the next couple of years to determine efforts to gather data and information that will assist them in measuring impact of the training and making decisions to improve the training.

The Iowa Mentoring and Induction Program

Every new educator in lowa enters into a two-year induction program that addresses the educator's personal and professional needs and trains him or her on lowa's eight teaching standards. A mentor is assigned to each educator – not to evaluate for employment purposes, but to observe, critique, and provide support and advice on effective teaching practices. In 2007, school psychologists, nurses, social workers, and speech and language pathologists with a teaching license who are new to the profession were approved to participate in the mentoring and induction program.

Mentors must have at least four years of teaching experience and demonstrated skills in classroom training and coaching. They receive training on district expectations, based on Iowa's eight teaching standards. Mentoring programs can be designed by the district or the AEA, which provide school improvement services for the local education community. The mentor must follow this program while focusing on the educator's individual needs. One hundred percent of the public school districts and all AEAs in Iowa have a mentoring and induction plan that has been approved by the DE.

After the two-year induction program, the new educator receives a standard license in most cases. The state fully funds induction for the required two years. If an educator does not meet the requirements after the two years, a third year in the induction program can be granted by the district, but must be funded by the district. If the educator does not successfully complete the program after the third year, that educator cannot receive a license and cannot continue to teach in the state. According to a state-by-state assessment of all states by the *New Teacher Center*, lowa is one of four states in the nation to have an outstanding mentoring and induction program based on policy and supporting state appropriations.

During the 2009-10 school year, 2,836 new educators were supported by the state-funded lowa Mentoring and Induction program. This total is comprised of both first and second year educators in local education agencies (LEAs) and AEAs statewide.

Teacher Quality Partnership Grant

The federal Teacher Quality Partnership grant was awarded to and is administered by the Iowa Department of Education in March of 2010 in the amount of \$9,035,380 for five years. The work of the grant is directed by the department's administrative consultant who oversees the work of the state's mentoring and induction program. Grant partners include: University of Northern Iowa, small rural high-needs schools in Iowa, UCLA/CRESST with Margaret Heritage, and the Stanford University School Redesign Network with Ray Pecheone and Linda Darling Hammond, and the University of Iowa Center for Evaluation and Assessment.

The mission of the Iowa Teacher Quality Partnership Grant is to increase the learning and achievement of Iowa PK-12 students by continuously developing more highly effective teachers from pre-service through the entire teaching career. The grant will achieve this mission by 1) defining emerging attributes of effective teaching and integrating those attributes into both pre-service programs and professional development for beginning teachers and 2) examining and integrating a diverse set of teacher and student artifacts to document content knowledge of academic major and effective teaching featuring teacher work samples supported by an integrated technology platform. The purpose is to enhance and support the professional development of prospective and current teachers in Iowa, *especially beginning teachers*.

In order to enhance the quality of beginning teachers entering the profession, the lowa proposal provides a series of measurable and sustainable objectives that will achieve three major project goals: 1) emerging attributes of effective teaching will be examined, identified and defined in preparation for integration into a partner institution of higher education pre-service program and into partner local education agency professional development, 2) pre-service faculty will integrate the attributes of effective teaching into pre-service programs, which will be documented through prospective teacher-created digital artifacts to be placed into an integrated technology platform and 3) partner local education agencies will integrate the attributes of effective teaching into professional development, which also will be documented through teacher-created artifacts to be placed into an integrated technology platform.

Iowa Mentoring and Induction Institute

The annual statewide Mentoring and Induction Institute was not held on 2010 due to lack of funding. The Institute is planned for 2011 and will be held in Cedar Falls, Iowa, June 20-21, 2011. Co-sponsors with the Department of Education included the University of Northern Iowa and the Iowa State Education Association. The Institute will address effective teaching practices to support beginning educators from the pre-service experience to the classroom. Dr. Linda Darling-Hammond, the Charles Ducommon Professor of Education and co-director of the School Redesign Network, Stanford University, will keynote via live satellite remote. In addition, the 2010 National Teacher of the Year, Sarah Brown-Wessling, Johnston, Iowa secondary teacher, will speak on effective teaching.

The Mentoring and Induction Institute will confer the annual Mildred Middleton Crystal Key Awards for Outstanding Mentoring and for Outstanding Leadership in a Mentoring and Induction Program. The awards are provided by ISEA and will be presented by ISEA President Chris Bern. Over 250 teachers, principals, and higher education professors are expected to attend the 2011 Institute.

The 2011 Iowa Mentoring and Induction Institute will be financially supported by the federally funded Teacher Quality Partnership grant.

The Iowa Mentoring and Induction Network

The lowa Mentoring and Induction Network is primarily comprised of AEA staff who administer the program in their areas. The Network is led by the department administrator of the lowa Mentoring and Induction program. The network meets semi-annually in the Des Moines area. The full-day network meetings provide information and technical assistance to AEAs and others in attendance on such topics as licensure issues for new educators, system support, lowa mentoring and induction models, and mentoring resources.

Mentoring and Induction Statewide (MITS) Steering Committee

This committee (MITS) meets several times a year and is comprised of representatives of the Iowa Department of Education (DE), AEAs, higher education, local school districts, and ISEA. The MITS Committee gives guidance and direction to the DE on program issues and plans and coordinates the annual Iowa Mentoring and Induction Institute. The steering committee was not able to attend the New Teacher Symposium in 2010 due to a lack of funding to support travel. However, three of the committee members will be able to attend in 2011 with funding from the federal Teacher Quality Partnership grant. The symposium is a significant opportunity to network with national experts in the field of mentoring and induction. The symposium, sponsored by the New Teacher Center, is attended by over 3,000 educators from the United States and several countries from around the world. Resources and information acquired at the symposium are consistently used to enhance the quality of the Iowa Mentoring and Induction Program and have directly impacted educational opportunities provided at the annual mentoring and induction institute.

Mentoring and Induction Model

The lowa Department of Education program administrator of lowa's Mentoring and Induction Program co-chaired with ISEA an effort that resulted in a model for districts and AEAs to follow in developing a high quality mentoring and induction program at the local and regional levels. During the 2009-2010 school year, over 50 districts in Iowa piloted *Journey to Excellence: Iowa Training Model for Mentors of Beginning Educators.* A full week of training for districts and AEAs was held in June, 2010.

Journey to Excellence is designed to prepare and support mentors as they assist beginning teachers' transition from the university to classroom practice. Six days of training are held over two years for the mentor, four days the first year and two days the second year. In addition, the mentor and beginning educator attend one day in August, the Introduction to *Journey to Excellence*.

Using best teaching practices, mentors are trained for their role of supporting and guiding beginning teachers. Interactive and in-depth, the training also offers opportunities for mentors to reflect on their own practice as they provide guidance to beginning teachers. Mentors leave with a set of materials and skills designed to effectively structure conversations about teaching practice related to the Iowa Teaching Standards and Criteria.

New Teacher Retention in Iowa

New professionals or new teachers are defined as those in their first and second years of teaching. The retention of new teachers in public schools and Area Education Agencies (AEAs) in Iowa has increased since the Teacher Quality Legislation was implemented. Mentoring and induction was first offered in 2001-2002.

Prior to the implementation of the teacher quality legislation, 86.3 percent of 2000-2001 first year teachers returned to teach the next year. However, 92.2 percent of 2008-2009 teachers returned to teach in 2009-2010. This was an increase of 5.9 percentage points (Table 1). The percent of second year teachers that returned to teach a third year increased from 88.8 percent for 2000-2001 second year teachers to 92.0 percent for 2008-2009 second year teachers (Table 2). The percent of 2000-2001 first and second year teachers that returned to teach the next year was 87.5 percent and the percent of 2008-2009 first and second year teachers that returned to teach the next year was 92.1 percent, an increase of 4.6 percentage points (Table 3).

The percent of first year teachers still teaching in public schools and AEAs two years after their first year also increased. For example, of the 1836 first year teachers in the base year 2000-2001, 1425 or 77.6 percent were in the classroom in 2002-2003. On the other hand, 86.7 percent of the first year teachers in 2007-2008 were still teaching in the 2009-2010 school year. This was an increase of 9.1 percentage points (Table 1). Table 2 shows that 82.0 percent of second year teachers in 2000-2001 were teaching two years later and 85.4 percent of second year teachers in 2007-2008 were teaching two years later. As shown in Table 3, 79.8 percent of first and second year teachers combined in 2000-2001 were teaching two years later and 86.1 percent of first and second year teachers combined in 2007-2008 were teaching two years later.

Also note that there has been considerable variability in the number of first and second year teachers during the last eight years. The number of first and second year teachers was greatest in 2000-2001 and decreased for the next three years. During the next four years the number of first and second year teachers slowly increased. The number of first and second year teachers decreased slightly in 2008-2009 and again in 2009-2010.

School District and AEA First and Second Year Teacher Retention 2000-01 to 2009-10

Source: Iowa Department of Education, Bureau of Planning, Research and Evaluation Basic Educational Data Survey (BEDS), Staff Files

Note: Includes teachers in public schools and AEAs.

Table 1:

Iowa Public School and AEA First Year Teacher Retention 2000-01 to 2009-10

First Year Teachers

	Number	Teachers								
Base	Teachers	Returning								
School	Base School	in 2001-	in 2002-	in 2003-	in 2004-	in 2005-	in 2006-	in 2007-	in 2008-	in 2009-
Year	Year	2002	2003	2004	2005	2006	2007	2008	2009	2010
2000-		1585	1425	1342	1274	1225	1185	1141	1088	1071
2001	1836	(86.3%)	(77.6%)	(73.1%)	(69.4%)	(66.7%)	(64.5%)	(62.1%)	(59.3%)	(58.3%)
2001-			1413	1288	1217	1158	1093	1063	999	970
2002	1623		(87.1%)	(79.4%)	(75.0%)	(71.3%)	(67.3%)	(65.5%)	(61.6%)	(59.8%)
2002-				1143	1042	982	931	878	833	813
2003	1290			(88.6%)	(80.8%)	(76.1%)	(72.2%)	(68.1%)	(64.6%)	(63.0%)
2003-					1307	1209	1144	1088	1007	986
2004	1452				(90.0%)	(83.3%)	(78.8%)	(74.9%)	(69.4%)	(67.9%)
2004-						1411	1279	1209	1121	1068
2005	1536					(91.9%)	(83.3%)	(78.7%)	(73.0%)	(69.5%)
2005-							1465	1339	1223	1191
2006	1611						(90.9%)	(83.1%)	(76.0%)	(73.9%)
2006-								1546	1417	1332
2007	1694							(91.3%)	(83.6%)	(78.6%)
2007-									1674	1558
2008	1796								(93.2%)	(86.7%)
2008-										1433
2009	1555									(92.2%)
2009-										
2010	1277									

Source: Iowa Department of Education, Bureau of Planning, Research and Evaluation Basic Educational Data Survey (BEDS) Staff Files.

Table 2:
Iowa Public School and AEA Second Year Teacher Retention 2000-01 to 2009-10

Base	Number Teachers	Teachers Returning								
School	Base School	in 2001-	in 2002-	in 2003-	in 2004-	in 2005-	in 2006-	in 2007-	in 2008-	in 2009-
Year	Year	2002	2003	2004	2005	2006	2007	2008	2009	2010
2000-		1633	1508	1430	1351	1290	1245	1212	1162	1125
2001	1840	(88.8%)	(82.0%)	(77.7%)	(73.4%)	(70.1%)	(67.7%)	(65.9%)	(63.2%)	(61.1%)
2001-			1721	1602	1508	1461	1401	1346	1279	1253
2002	1952		(88.2%)	(82.1%)	(77.3%)	(74.9%)	(71.8%)	(69.0%)	(65.5%)	(64.2%)
2002-				1450	1355	1282	1210	1166	1095	1069
2003	1616			(89.7%)	(83.8%)	(79.3%)	(74.9%)	(72.2%)	(67.8%)	(66.2%)
2003-					1176	1105	1038	974	926	905
2004	1315				(89.4%)	(84.0%)	(78.9%)	(74.1%)	(70.4%)	(68.8%)
2004-						1337	1247	1175	1089	1064
2005	1472					(90.8%)	(84.7%)	(79.8%)	(74.0%)	(72.3%)
2005-							1447	1357	1243	1193
2006	1616						(89.5%)	(84.0%)	(77.0%)	(73.8%)
2006-								1488	1337	1292
2007	1647							(90.3%)	(81.2%)	(78.4%)
2007-									1569	1473
2008	1724								(91.0%)	(85.4%)
2008-										1570
2009	1706									(92.0%)
2009-										
2010	1559									

Source: Iowa Department of Education, Bureau of Planning, Research and Evaluation Basic Educational Data Survey (BEDS) Staff Files.

Table 3:
Iowa Public School and AEA First and Second Year Teacher Retention 2000-01 to 2009-10

	Number									
_	Teachers	Teachers	Teachers	Teachers	Teachers	Teachers	Teachers	Teachers	Teachers	Teachers
Base	Base	Returning								
School	School	in 2001-	in 2002-	in 2003-	in 2004-	in 2005-	in 2006-	in 2007-	in 2008-	in 2009-
Year	Year	2002	2003	2004	2005	2006	2007	2008	2009	2010
2000-		3218	2933	2772	2625	2515	2430	2353	2250	2196
2001	3676	(87.5%)	(79.8%)	(75.4%)	(71.4%)	(68.4%)	(66.1%)	(64.0%)	(61.2%)	(59.7%)
2001-			3134	2890	2725	2619	2494	2409	2278	2223
2002	3575		(87.7%)	(80.9%)	(76.2%)	(73.3%)	(69.8%)	(67.4%)	(63.7%)	(62.2%)
2002-				2593	2397	2264	2141	2044	1928	1882
2003	2906			(89.2%)	(82.5%)	(77.9%)	(73.7%)	(70.3%)	(66.3%)	(64.8%)
2003-					2483	2314	2182	2062	1933	1891
2004	2767				(89.7%)	(83.6%)	(78.9%)	(74.5%)	(69.9%)	(68.3%)
2004-						2748	2526	2384	2210	2132
2005	3008					(91.4%)	(84.0%)	(79.3%)	(73.5%)	(70.9%)
2005-						. , ,	2912	2696	2466	2384
2006	3227						(90.2%)	(83.5%)	(76.4%)	(73.9%)
2006-								3034	2754	2624
2007	3341							(90.8%)	(82.4%)	(78.5%)
2007-								,	3243	3031
2008	3520								(92.1%)	(86.1%)
2008-										3003
2009	3261									(92.1%)
2009-										<u> </u>
2010	2836									

Source: Iowa Department of Education, Bureau of Planning, Research and Evaluation Basic Educational Data Survey (BEDS) Staff File

Professional Development

Priorities:

The DE's efforts during 2009-2010 to improve the professional development systems have emphasized the following priorities:

- 1. Developing the capacity of school leaders and AEA personnel in Iowa to lead and support professional development at the district and building level.
- 2. Assisting local districts in accessing research-based instructional content through the lowa Teacher Development Academies.
- 3. Providing technical assistance to implement the requirements of the Student Achievement and Teacher Quality Act (2007)
- 4. Supporting the professional development needed to implement the Iowa Core Curriculum

Actions:

Priority 1: Developing the capacity of school leaders and AEA personnel in Iowa to lead and support professional development at the district and building level.

The DE delivered several learning opportunities and technical assistance events to help educators learn how to lead quality professional development at the district and building level. Participants included superintendents, principals, central office administrators, professional development leadership team members, college and university representatives, and AEA staff. Capacity building efforts focused on the leadership actions needed to direct school improvement initiatives and implement professional development focused on accomplishing gains in student achievement. Examples:

- AEA Chief Administrators, DE consultants, a LEA superintendent from each AEA, and other various educational organizations continue to work with Dr. Richard Elmore and a team from the Harvard Graduate School of Education to build the capacity of school leaders to build and sustain the district school improvement efforts with the support of a network of school leaders. Each AEA's Superintendent Network is meeting monthly to build its knowledge and skill in instructional rounds and participating in an instructional rounds visit of a participating school district. The network is also a part of evaluation project where the teams are collecting samples of "theory of actions," "problems of practice", notes from the visits, follow-up plans, etc. in an effort to enhance the school improvement efforts of the district.
- In addition to training events, the DE provided technical assistance and on-going support to the development of a statewide coordinated system of administrator development for student achievement. Iowa Department of Education personnel contributed to the Iowa Leadership Academy Design Team as this group formed a comprehensive approach to preparing school leaders. An example of the outcomes of this group's efforts includes The Iowa Leadership Academy held on June 2010 in West Des Moines, Iowa. It provided professional development for school principals that focused on addressing supporting the leadership efforts of the Iowa Core, concept-based learning, leading and supporting instructional change, and developing an individual professional development plan linked to district, building, and individual goals.
- Iowa was represented on the Advisory Board of the National Comprehensive Center for Teacher Quality (NCCTQ) through June of 2010. After that time, the individual who represented Iowa on this board retired from state government and is no longer active with the organization. A team of state agency staff attended the NCCTQ *What Works* national conference on teacher effectiveness in 2010. The center has served as a national resource to which the <u>regional comprehensive centers</u>, states, and other education stakeholders often turn for strengthening the quality of teaching especially in high-poverty, low-performing, and hard-to-staff schools. Through the work on the Advisory Board and conference attendance, lowa has had access to guidance in improving teacher quality systems. Some of the resources include:

Online resources:

National Comprehensive Center for Teacher Quality website—<u>www.tqsource.org</u> Databases and interactive data tools

Print and electronic products:

Research synthesis series TQ <u>Research and Policy Update</u> electronic newsletter White papers Biennial report

Meetings and networks:

Issue forums relating to specific teacher quality topics What Works Annual Conference Webcasts and Web dialogue

Technical assistance resources:

Information clearinghouse Consultation Needs sensing

Priority 2: Assisting local districts in accessing research-based instructional content through the lowa Teacher Development Academies (ITDA)

The ITDAs aim at increasing teacher skills and student achievement through intensive professional development. The ITDAs feature research-based content and are designed to support local school districts and AEAs in offering professional development based on the Iowa Professional Development Model. The academies include:

- Authentic Intellectual Work (AIW): Iowa began its journey with Authentic Intellectual Work (AIW) in September 2007. Working in collaboration with Drs. Fred Newmann, Dana Carmichael, and Bruce King, the Iowa Department of Education began supporting high schools administrator and teacher teams to improve instruction and student learning through the application of AIW, a professional development program designed to prepare students to successfully respond to the challenges of the modern world and workplace. AIW is defined by three criteria: *construction of knowledge* through *disciplined inquiry* to produce discourse, products, and performance that have *value beyond school*. The AIW framework establishes criteria for teaching that
 - Maximize expectations of intellectual challenge for all students,
 - Increase student interest in academic work,
 - Support teachers in teaching for in-depth understanding rather than superficial coverage of material, and
 - Provide a common conception of student intellectual work that promotes professional community among teachers of different grade levels and subjects.

Activities and Accomplishments. A certain indicator of the success of the AIW program in Iowa is its rapid growth. Stemming largely from "word of mouth advertising" from one teacher to another, AIW has experienced dramatic growth during its three years of implementation in the state. During its initial year, teams from nine schools included 76 teachers who participated in the program. During 2008-09 an additional 165 teachers joined their peers in implementing AIW at those nine schools and teams from eleven other high schools began professional development in AIW, bringing the total number of teachers participating to 336. Expansion in schools already practicing AIW, into other schools within those districts, and the addition of twelve new schools brought the total of teachers participating in AIW during the 2009-10 school year to 1102. This makes AIW the largest Department-supported professional development initiative in the state. Next year's plans include adding new schools and expanding the numbers of teachers included at existing AIW sites.

Efforts are also being made to make lowa self-sustaining in AIW. At present, 17 AEA and DE consultants been trained as AIW coaches. The intent is to develop a cadre of coaches within each AEA to provide this service to districts.

Results. Statewide, student baseline data have been collected and will be compared in the future as the number of teachers using AIW to design instruction and assessment tasks increases. We are also in the process of doing a statewide evaluation of AIW this year.

Data have been collected and analyzed from the eight districts within one AEA region that have participated in the AIW initiative. The following data demonstrate evidence of the expected increase in student achievement for all participating schools. Average growth in student proficiency in the Green Hills year three participants since beginning AIW is as follows (based on the standardized lowa Tests): growth of 3 percent in literacy, 4 percent in mathematics, 5 percent in science and 4 percent in social studies. In addition to increased proficiency, there was a reduction in gaps in the disaggregated groups of both special education and low socioeconomic status (SES). The special education gap decreased by 20 percent in literacy and 6 percent in science and 11 percent in social studies. These achievement data have been compared with similar schools in Green Hills not involved with AIW. The comparison schools were selected by identifying similar sized districts with similar demographics. The AIW treatment group scored 4 percent higher in literacy, 4 percent higher in math, and 1 percent higher in social studies than the comparison group. Additionally, data indicates that 100 percent of the teachers in these eight AIW schools have engaged in building-wide AIW professional development and implemented authentic lessons and instruction.

As a further example, one of the rural third-year schools reports the following results since beginning participation in the AIW initiative: on the ITED, overall 9-12 reading proficiency increased by 9 percent, the special education gap decreased by 36 percent and the SES gap decreased by 11 percent. In addition, for the 77 percent of the seniors taking the ACT, the average composite was 23.6, above the state average of 22.4.

Since many lowa schools are only beginning the AIW initiative, we expect improved student achievement as their journeys continue.

- 2. Concept-Oriented Reading Instruction (CORI): CORI is a framework that supports implementation of the lowa core by engaging upper elementary and middle school teams in a research-based classroom instructional model emphasizing reading engagement, reading comprehension, and conceptual learning in science and other content areas in order to improve reading achievement. To date, teams from 12 schools representing eight school districts have participated in CORI. Middle schools in three districts have expanded CORI to the entire building. Data is being collected and analyzed to determine CORI's effectiveness in increasing student achievement.
- 3. Picture Word Inductive Model (PWIM): The Picture Word Inductive Model emphasizes reading, writing, listening, and comprehension as tools for thinking, learning, and sharing ideas. As of January 2010, sixteen districts are participating in this reading initiative. Participating teachers learn to use pictures containing familiar objects, actions and scenes to draw out words from children's listening and speaking vocabularies and help students discover phonetic and structural principles present in those words.

Priority 3: Providing technical assistance to implement the requirements of the Student Achievement and Teacher Quality Act (2007)

On-going technical assistance has been provided directly to AEAs and LEAs through the frequently asked question (FAQ) process, conference calls, and presentations as requested. Over 100 questions have been fielded to clarify the implementation of changes to the Teacher Quality Act. These are posted to the DE web site.

The revision of the Iowa Professional Development Model (IPDM) Technical Guide has been completed and the document is posted in its entirety under the Educator Quality link on the Department of Education's website. The Guide is also posted in separate sections that offer quick links to useful steps and tools for use by Iowa's educational leaders. The new IPDM Technical Guide includes guidance on legislative changes including requirements related to the teacher quality committees, the Iowa Core Curriculum and professional development plans.

The Department collaborated with the North Central Comprehensive Center to develop a publication that describes the Iowa Student Achievement and Teacher Quality Act and Iowa's approach for focusing on professional growth to accomplish gains in student achievement. Teacher Quality: A Comprehensive Approach to Improving Student Achievement in Iowa (2009).

Priority 4: Supporting the professional development needed to implement the Iowa Core Curriculum

The IPDM provides the framework to assist AEAs and local districts as they design professional development to implement the Iowa Core Curriculum. This year the DE continuously developed and refined technical assistance and materials to implement the Iowa Core Curriculum following the Iowa Standards for Professional Development.

Iowa Core Network: Aug. 19; Sept. 16; Oct. 21 and 22; Nov. 18 and 19; Dec. 16 and 17; Jan. 20 and 21; Feb. 17 and 18; March 24 and 25; April 21; May 19 and 20; June 16 and 17.

Target Audience: AEA Network. The Network is made up of practitioners who have been organized to deliver the training and facilitation needed by schools to conduct the following actions critical to the successful implementation of the Core. This group of trainers/facilitators will play a collaborative role in helping school leaders implement professional development for educators to improve their instructional practices that are aligned with the Core. Content: Network efforts this year have focused on three areas: providing support for the development and improvement of district and school lowa Core Implementation Plans, providing support for professional development, and supporting districts in improving the alignment of local curriculum to the essential concepts and skills of the lowa Core.

Early this year, the Network provided support and resources for districts in developing and improving implementation plans, which were due July 1, 2010. Of the 377 districts or schools that were required to submit plans, 354 submitted plans that met compliance requirements, nine submitted plans that did not meet requirements, and 14 failed to submit plans. By the end of October, all required plans were submitted and met compliance requirements. Network members facilitated a series of collaborative peer reviews held regionally throughout the state. The purpose of the peer review was for each participating school or district to provide and receive feedback on the Iowa Core Implementation Plan. Personnel from at least two schools or districts met and exchanged plans, and through a collaborative process, presented their plan and received feedback from each other. Sixty-eight percent of the public school districts participated in the process and 95 percent of those that participated indicated that they felt the process was helpful.

The lowa Core Network has also developed an lowa Core Statewide Resources moodle site to serve as a repository of resources for all lowa educators to use in successfully implementing the lowa Core. The moodle platform was chosen because it is available to all AEAs and LEAs and has the capacity to grow as more lowa Core resources are developed. Included on the site are research briefs and literature reviews, professional development protocols, video segments, discussion guides, and organized learning sequences. Information and resources including podcast, video tutorials, on-line modules and additional collaborative learning team professional development learning sequences and agendas will continue to added to the site as they are developed. Many of these resources were developed with the support of the National Staff Development Council, Iowa Public Television, and numerous Iowa K-16 administrators and teachers. District-based collaborative learning teams consisting of teachers and administrators will use these materials to deepen their understanding of their Iowa Core and to identify ways to improve instruction.

An online database, known as the Iowa Core Alignment Toolkit (I-CAT) was created to help teachers and administrators reflect on what their students have an opportunity to learn from the Iowa Core over the course of a school year. The Network has been provided the necessary to training to assist districts in effectively using this tool.