TESTIMONY ON RAW MILK BENEFITS AND RISKS FOR IOWA SUBCOMMITTEE HEARING ON SENATE STUDY BILL 3126

Peg Coleman, Medical Microbiologist/Risk Analyst

Tuesday 1 February 2023

EXPERIENCE AND CREDENTIAL HIGHLIGHTS Margaret E. (Peg) Coleman, MS²

► Medical microbiologist with 30+ years risk analyst experience with USDA and consulting companies, two graduate degrees

Medical Microbiology (U.Georgia, College of Veterinary Medicine)Biology/Biochemistry (Utah State University)

► Resume documents extensive publications in peer-reviewed literature on microbial benefits and risks (1998 - 2022)

>Expert certified in microbial ecology and microbial risk assessment for multiple court proceedings

➤ Fellow of Society for Risk Analysis, Advisory Board member of the Raw Milk Institute

peg@colemanscientific.org; http://www.colemanscientific.org/

RECENT EVIDENCE CONTRADICTS MISCONCEPTIONS ABOUT RAW MILKS

➤The assumption of 20th century thinking that breastmilk and cow milk are sterile is a MYTH replaced by 21st century science on milk microbiota

► Milk microbiota now known to contribute to healthy gut, immune, neural, and respiratory systems (Coleman et al., 2021a, b; Dietert et al., 2022)

► Pathogens grows faster in milk AFTER pasteurization kills competing natural microbes; increased rates with increasing temperature (Stasiewicz et al., 2014)

Recent body of scientific evidence including outbreak rates, predictive microbiology experiments, and human clinical studies informs estimates of benefits and risks

INDEPENDENT STATISTICAL ANALYSIS BY STATE: No Increasing Trend for Raw Milk Outbreak Rates

Similarly, no increasing trend for rates of illness and hospitalization, figures appended

Zero raw milk outbreaks reported for NE, SD (data CDC, US Census 2005-2016)

SOME PATHOGEN-SPECIFIC DATA FROM CDC DATASET (2005-2017)

	#'campy' outbreaks	#'campy' illnesses	#ʻlisteriosis' outbreaks	# 'listeriosis' illnesses
Raw Milk	99	1266	1	2 (2 deaths)
Pasteurized Milk	2	1844	1	5 (3 deaths)

QUANTITATIVE MICROBIAL RISK ASSESSMENTS Estimated Risks for Listeriosis in Milks FDA/FSIS (2003); update by independent researchers (Latorre et al., 2011)

Pasteurized Milk

- 90.8 deaths per year (high risk)
- 10⁻⁹ per serving or
 1 case in 1,000,000,000
 exposures (moderate risk)

Unpasteurized Milk

- 3.1 deaths per year (moderate risk)
- 7x10⁻⁹ per serving or
 7 cases in 1,000,000,000
 exposures(high risk)
- ~2x10⁻¹⁵ per serving or
 2 cases in
 1,000,000,000,000,000 exposures (very low risk)

FDA/FSIS

Latorre

EXTREMELY LOW PERCENTAGE POSITIVES FROM RAW MILK MONITORING PROGRAMS IN US AND AROUND THE WORLD

Recent Results from Pathogen Testing for Raw Milk from 6 Countries	Campylobacter	<i>E. coli</i> O157:H7 or EHECs	L. monocytogenes	Salmonella
PERCENTAGE	93/9,740	26/10,934	40/9,118	14/7,976
POSITIVE	(0.01%)	(<0.01%)	(<0.01%)	(<0.01%)

From Table 1 in peer-reviewed publication by Dietert and colleagues (2022; full table appended)

NO GROWTH OF MAJOR PATHOGENS IN REFRIGERATED RAW MILK

Pathogen growth study conducted by an independent certified laboratory (FSNS, 2022) documents no growth of four major pathogens (*Campylobacter*, *E. coli* 0157:H7, *L. monocytogenes*, *Salmonella*) in refrigerated raw milk (4.4 C or 40 F)

Preparation of a manuscript based on this FSNS study is underway for submission to a peer review journal later this year

REASONING FROM AVAILABLE EVIDENCE

One CA dairy produced ~1,352,000 gallons of fluid raw milk for retail markets from 2018 to 2020, representing about 20,480,000 servings of 250 mL

➢No outbreaks of illness associated with raw milk reported in CA for this period

Available data consistent with a risk of illness less than 1 in over 20 million servings for retail raw milk consumers in CA

SOME RECENT PEER-REVIEWED STUDIES

- 2021a: Coleman, M.E., Dietert, R.R., North, D.W., Stephenson, M.M. Enhancing Human Superorganism Ecosystem Resilience by Holistically 'Managing Our Microbes'. Applied Microbiology 1(3): 471-497. <u>https://doi.org/10.3390/applmicrobiol1030031</u>.
- 2021b: Coleman, M.E., North, D.W., Dietert, R.R., Stephenson, M.M. Examining Evidence of Benefits and Risks for Pasteurizing Donor Breastmilk. *Applied Microbiology* 1(3):408-425. <u>https://doi.org/10.3390/applmicrobiol1030027</u>.
- 2022. Dietert, R. R., Coleman, M. E., North, D. W., Stephenson, M. M. Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow's Milk Evidence Map Example. *Applied Microbiology* 2(1):25-52. <u>https://doi.org/10.3390/applmicrobiol2010003.</u>
- 2022. North, D.W., Coleman, M.E., Hull, R.R. Need for International Workshops to Deliberate Evidence of Benefits and Risks of Raw Milks. Accepted in *Corpus Journal of* Dairy and Veterinary Science.
- 2022. Azzolina, N.A. and Coleman, M.E. Detailed Statistical Analysis of CDC Outbreaks Associated with Raw and Pasteurized Dairy (2005-2019). In preparation.

BACKUP SLIDES

TABLE 1, DIETERT ET AL., 2022

(Reference)	(State if US)	Campylobacter	E. coli O157:H7 or EHECs	L. monocytogenes	Salmonella
Canada (BCHA, 2021; website listed above)	2015-2021	0/192	0/192	0/192	0/192
Poland (Andrzejewska et al., 2019, [91])	2014-2018	0/113 vending machines; 26/221 (12%) <i>C. jejuni,</i> directly from farmers	Not Tested	Not Tested	Not Tested
UK (McLauchlin et al, 2020, [92])	2017-2019	18/635 (2.8%)	0/58 O157; 3/304 EHEC (0%, 1%)	1/642 (0.2%)	3/622 (0.5%)
UK (Willis et al., 2018, [93])	2014 – 2016 (routine monitoring)	2/770 (<0.01%)	2/770 (<0.01%)	2/770 >100 cfu/mL (<0.01%)	0 /770
US State Monitoring	2009-2014 (CA)	0/61	0/61	0/61	0/61
(database of FOIA source	2009-2014 (NY)	6/783 (0.7%)	0/782	1/781 (0.1%)	0 /780
data from licensed farms;	2009-2014 (TX)	4/601 (0.7%)	0/596	4/596 (0.7%)	11/606 (1.8%)
Stephenson and Coleman, 2021, [90])	2012-2015 (WA)	0/497	0 /502 2/501 (0.4%)	0/502	0/494
Germany (Berge & Baars, 2020, [84])	2001-2015 (VZM)	7/2,352 (0.3%)	17/2,737 (0.7%)	30/2,999 (1%)	0/3,367
Germany (Berge & Baars, 2020, [84])	2001-2015 (not for direct consumption raw, pre- pasteurized)	17/2,258 (0.8%)	82/5,433 (1.5%)	52/2,355 (2.2%)	0 /1,084
Finland (Castro et al., 2017, [94])	2013-2015	Not Tested	Not Tested	5/105 retail bottles (4.8%) 2/115 bulk tanks (1.7%)	Not Tested
Finland (Jaakkonen et al., 2019, [95])	2014-2015	0/789	0/789 O157:H7; 2/789 O121:H19 (<1%)	Not Tested	Not Tested
US (Del Collo et al., 2017, [96])	2014 (17 states)	13/234 culture; 27/234 PCR (6%; 12%)	Not Tested	Not Tested	Not Tested
OVERALL PERCENTAGE POSITIVE		93/9,740 (0.01%)	26/10,934 (<0.01%)	40/9,118 (<0.01%)	14/7,976 (<0.01%)

INDEPENDENT STATISTICAL ANALYSIS BY STATE: <u>No Increasing Trend</u> for <u>llness</u> Rates Verified by Mann-Kendall Test for Trend

INDEPENDENT STATISTICAL ANALYSIS BY STATE: <u>No Increasing Trend</u> for <u>Hospitalization</u> Rates Verified by Mann-Kendall Test for Trend

